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such that g(y;) = Xi for all i, and f og and g ofare the respective identity map
pings.

Corollary 4.3. Two modules having bases whose cardinalities are equalare
isomorphic.

Proof Clear.

We shall leave the proofs of the following statements as exercises.

Let M be a free module over A, with basis {xiLe f ' so that

M = EBAxi'
iel

Let a be a two sided ideal of A. Then aM is a submodule of M. Each nr, is a
submodule of AXi' We have an isomorphism (of A-modules)

M/aM :::::: EB Ax i/axi'
i e I

Furthermore, each Axfax, is isomorphic to A/a, as A-module.

Suppose in addition that A is commutative. Then A/a is a ring. Furthermore
M/aM is afree moduleover A/a, and each Axi/axi isfree over A/a. IfXi is the
imageofXi under the canonical homomorphism

then the singleelement Xi is a basis of Ax.kxx, over A/a.

All of these statements should be easily verified by the reader. Now let A be
an arbitrary commutative ring. A module M is called principal if there exists
an element X E M such that M = Ax. The map

a H ax (for a E A)

is an A-module homomorphism of A onto M, whose kernel is a left ideal a, and
inducing an isomorphism of A-modules

A/a = M.

Let M be a finitely generated module, with generators {VI"' " vn } . Let F
be a free module with basis {e., ... , en}. Then there is a unique surjective
homomorphismf: F~ M such that j'(e.) = Vi' The kernel offis a submodule
MI ' Under certain conditions , M1 is finitely generated (ef. Chapter X, §l on
Noetherian rings), and the process can be continued. The systematic study of
this process will be carried out in the chapters on resolutions of modules and
homology.
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Of course , even if M is not finitely generated , one can carry out a similar
construction , by using an arbitrary indexing set. Indeed, let {v;} (i E l) be a family
of generators . For each i , let F, be free with basis consisting of a single element
e., so F, = A. Let F be the direct sum of the modules F, (i E l) , as in Proposi
tion 3. I . Then we obtain a surjective homomorphism f : F ~ M such that
f(ej) = Vj' Thus every module is a factor module of a free module .

Just as we did for abelian groups in Chapter I, §7, we can also define the
free module over a ring A generated by a non-empty set S. We let A(S) be the
set of functions <p : S~ A such that <p(x) = 0 for almost all XES. If a E A and
XES , we denote by ax the map <p such that <p(x) = a and <p(y) = 0 for y "* x .
Then as for abelian groups, given <p E A(S) there exist elements aj E A and
x, E S such that

<p = a,xI + . . . + anxw

It is immediately verified that the family of functions {8x } (x E S) such that
8x<x) = I and 8xCY) = 0 for y "* x form a basis for A(S). In other words, the ex
pression of <p as 2: a.x, above is unique . This construction can be applied
when S is a group or a monoid G, and give s rise to the group algebra as in
Chapter II , §5.

Projective modules

There exists another important type of module closely related to free modules,
which we now discuss .

Let A be a ring and P a module. The following properties are equivalent,
and define what it means for P to be a projective module .

PI. Given a homomorphism f : P --> M" and surjective homomorphism
g : M --> M", there exists a homomorphism h : P --> M making the
following diagram commutative.

P 2. Every exact sequence 0 --> M' --> M" --> P --> 0 splits.

P 3. There exists a module M such that P EB M is free, or in words, P is a
direct summand of a free module.

P 4. The functor M f--> HomACP, M) is exact.

We prove the equivalence of the four conditions.
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Assume P I. Given the exact sequence of P 2, we consider the map f = id
in the diagram

p

;/ j'"
M"~P~O

Then h gives the desired splitting of the sequence.
Assume P 2. Then represent P as a quotient of a free module (cf. Exercise 1)

F -+ P -+ 0, and apply P 2 to this sequence to get the desired splitting, which
represents F as a direct sum of P and some module.

Assume P 3. Since HomA(X EB Y, M) = HomA(X, M) EB HomA(Y, M),
and since M ~ HomA(F, M) is an exact functor if F is free, it follows that
HomA(P, M) is exact when P is a direct summand ofa free module, which proves
P4.

Assume P 4 . The proof of P 1 will be left as an exercise.

Examples. It will be proved in the next section that a vector space over a
field is always free, i.e . has a basis . Under certain circumstances, it is a theorem
that projective modules are free . In §7 we shall prove that a finitely generated
projective module over a principal ring is free. In Chapter X, Theorem 4.4 we
shall prove that such a module over a local ring is free; in Chapter XVI, Theo
rem 3.8 we shall prove that a finite fiat module over a local ring is free; and in
Chapter XXI , Theorem 3.7, we shall prove the Quillen-Suslin theorem that
if A = k[X\, ... , Xn ] is the polynomial ring over a field k, then every finite pro
jective module over A is free .

Projective modules give rise to the Grothendieck group . Let A be a ring .
Isomorphism classes of finite projective modules form a monoid . Indeed, if P
is finite projective, let [P] denote its isomorphism class. We define

[P] + [Q] = [P EB Q].

This sum is independent of the choice of representatives P, Q in their class. The
conditions defining a monoid are immediately verified . The corresponding Groth
endieck group is denoted by K(A).

We can impose a further equivalence relation that P is equivalent to pi if
there exist finite free modules F and F' such that P EB F is isomorphic to
pi EB F'. Under this equivalence relation we obtain another group denoted by
Ko(A) . If A is a Dedekind ring (Chapter II, § I and Exercises 13-19) it can be
shown that this group is isomorphic in a natural way with the group of ideal
classes Pic(A) (defined in Chapter II, §I) . See Exercises II , 12, 13. It is also a
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problem to determine Ko(A) for as many rings as possible, as explicitly as pos
sible . Algebraic number theory is concerned with Ko(A) when A is the ring of
algebraic integers of a number field. The Quillen-Suslin theorem shows if A is
the polynomial ring as above, then Ko(A) is trivial.

Of course one can carry out a similar construction with all finite modules.
Let [M] denote the isomorphism cla ss of a finite module M . We define the sum
to be the direct sum. Then the isomorphism classes of modules over the ring
form a monoid , and we can associate to this monoid its Grothendieck group .
This construction is applied especiall y when the ring is commutative . There are
many variations on this theme . See for instance the book by Bass, Algebraic
K-theory, Benjamin , 1968 .

There is a variation of the definition of Grothendieck group as follows. Let
F be the free abelian group generated by isomorphism clas ses of finite modu les
over a ring R , or of modules of bounded cardinality so that we deal with sets .
In this free abelian group we let I' be the subgroup generated by all elements

[M] - [M '] - [M il]

for which there exists an exact sequence 0 ~ M' ~ M ~ Mil ~ O. The factor
group FIf is called the Grothendieck group K(R) . We shall meet this group
again in §8 , and in Chapter XX , §3 . Note that we may form a similar Grothendieck
group with any family of modules such that M is in the family if and only if M'
and M il are in the famil y . Taking for the family finite projective modules , one
sees easily that the two possible definitions of the Grothendieck group coincide
in that case.

§5. VECTOR SPACES

A module over a field is called a vector space.

Theorem 5.1. Let V be a vector space over a fi eld K, and assume that
V =t- {O}. Let r be a set ofgenerators of V over K and let S be a subset ofr
which is linearly indep endent. Then there exists a basis <B of V such that
S c <B cr.

Proof Let Z be the set whose elements are subsets T of r which contain S
and are linearly independent. Then T is not empty (it contains S), and we
contend that ::r is inductively ordered. Indeed, if {'Ii} is a totally ordered subset
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of 1: (by ascending inclusion), then U7; is again linearly independent and con
tains S. By Zorn's lemma, let <:B be a maximal element of 1:. Then <:B is linearly
independent. Let W be the subspace of V generated by <:B . If W i= V, there
exists some element x E r such that x ¢ W. Then <:B u {x} is linearly inde
pendent, for given a linear combination

we must have b = 0, otherwise we get

x = - Lb-IayYEW.
yE<ll

By construction, we now see that ay = °for all Y E <:B, thereby proving that
<:B u {x} is linearly independent, and contradicting the maximality of <:B. It
follows that W = V, and furthermore that <:B is not empty since V i= {a}. This
proves our theorem.

If V is a vector space i= {a}, then in particular, we see that every set of
linearly independent elements of V can be extended to a basis, and that a basis
may be selected from a given set of generators.

Theorem 5.2. Let V be a vector space over a field K. Then two bases of V
over K have the same cardinality.

Proof. Let us first assume that there exists a basis of V with a finite
number of elements, say {VI' . •. , Vm }, m ~ 1. We shall prove that any other
basis must also have m elements. For this it will suffice to prove : If WI' • • • , w,
are elements of V which are linearly independent over K, then n ~ m (for
we can then use symmetry). We proceed by induction. There exist elements
c l , . . . , c; of K such that

(1)

and some c., say CI , is not equal to 0. Then VI lies in the space generated
by WI' V2,"" Vm over K, and this space must therefore be equal to V itself.
Furthermore, WI' V2 , .•• , Vm are linearly independent, for suppose b l , • • • , bm

are elements of K such that

If b l i= 0, divide by b, and express WI as a linear combination of V2' • • . , Vm •

Subtracting from (1) would yield a relation of linear dependence among the
Vi> which is impossible. Hence b l = 0, and again we must have all b, = °
because the Vi are linearly independent.
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Suppose inductively that after a suitable renumbering of the Vi ' we have
found WI> .. . , w, (r < n) such that

is a basis of V. We express W r+ 1 as a linear combination

with Ci E K. The coefficients of the Vi in this relation cannot all be 0 ; otherwise
there would be a linear dependence among the Wj ' Say Cr+ 1 =1= O. Using an
argument similar to that used above, we can replace vr + 1 by wr + 1 and still have
a basis of V. This means that we can repeat the procedure until r = n, and
therefore that n ~ m, thereby proving our theorem.

We shall leave the general case of an infinite basis as an exercise to the
reader. [Hint: Use the fact that a finite number of elements in one basis is
contained in the space generated by a finite number of elements in another basis.]

If a vector space V adm its one basis with a finite number of elements, say m,
then we shall say that V is finite dimensional and that m is its dimension. In
view of Theorem 5.2, we see that m is the number of elements in any basis
of V. If V = {O}, then we define its dimension to be 0, and say that V is
O-dimensional. We abbreviate ..dimension" by ..dim" or ..dirnj," if the
reference to K is needed for clarity.

When dealing with vector spaces over a field, we use the words subspace
and factor space instead of submodule and factor module.

Theorem 5.3. Let V bea vector space overafield K, andlet W bea subspace.
Then

dirnj, V = dim K W + dimj, V/W.

Iff: V --+ U is a homomorphism of vector spaces over K , then

dim V = dim Ker f + dim Imj.

Proof. The first statement is a special case of the second, taking for f the
canonical map. Let {UdiEl be a basis of 1m f, and let {wj}jEJ be a basis of
Ker f. Let {Vd iel be a family of elements of V such that f(vJ = Ui for each
i E I . We contend that

is a basis for V. This will obviously prove our assertion.
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Let x be an element of V. Then there exist elements {aJjE/ of K almost
all of which are 0 such that

f(x) = L ajUj .
jE/

is in the kernel off, and there exist elements {bj}jEJ of K almost all of which are
osuch that

From this we see that x = L ajVi + L bjwj, and that {Vi'Wj} generates V.
It remains to be shown that the family {vj, wJ is linearly independent. Suppose
that there exist elements c., dj such that

Applyingfyields

0= L cJ (vJ = L c.u.,

whence all Cj = O. From this we conclude at once that all dj = 0, and hence that
our family {vj, Wj} is a basis for V over K, as was to be shown.

Corollary 5.4. Let V be a vector space and W a subspace . Then

dim W ~ dim V.

If V is finite dimensional and dim W = dim V then W = V.

Proof Clear.

§6. THE DUAL SPACE AND DUAL MODULE

Let E be a free module over a commutative ring A . We view A as a free
module of rank lover itself. By the dual module E V of E we shall mean the
module Hom(E, A) . Its elements will be called functionals. Thus a functional
on E is an A-linear map f : E ~ A. If x E E and j" E E V

, we sometimes denote
I(x) by (x,f) . Keeping x fixed, we see that the symbol (x,f) as a function of
IE E V is A-linear in its second argument, and hence that x induces a linear map
on EV, which is 0 if and only if x = O. Hence we get an injection E ~ E VV

which is not always a surjection.
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Let {XJ iEI be a basis of E. For each i E l iei f, be the unique functional such
thatJi(xj) = Dij (in other words , I if i = j and 0 if i * j) . Such a line ar map
exists by general propert ies of bases (Theorem 4 . 1).

Theorem 6.1. Let E be a finit e free module over the commutative ring A .
offinite dimension n. Then EV is also f ree. and dim E V = n. If {xl . · · · . xn}
is a basis for E. and fi is the fun ctional such that fi(xj) = Dij. then {fl ' . . . . f n}
is a basis fo r EV

•

Proof. Let f E E V and let a, = f (Xi) (i = 1, . .. , n). We have

f(CIXI + . .. + c"xn) = cd(xl) + ... + c"f(xn)·

Hence f = o-J, + . .. + «J; and we see that the fi generate E V
• Furthermore,

the y are linearl y independ ent , for if

bdl + . .. + bnfn = 0

with b, E K , then evaluating the left-hand side on Xi yields

bJi(xi) = 0,

when ce b, = 0 for all i . Th is proves our theorem.

Given a basis {xJ (i = I , . .. , n) as in the theorem , we call the basis {fJ
the dual basis. In term s of these bases , we can express an element A of E with
coordinates (a l' . . . • an), and an element B of E v with coordinates (b l , .. . , bn),
such that

B = bdl + . .. + bn!, ,·

Then in term s of these coo rdinates , we see that

(A, B ) = a. b , + .. . + anb" = A . B

is the usual dot product of n-tuples.

Corollary 6.2. When E is f ree fi nite dimensional . then the map E ~ E V V

which to each x E V associates the f unctionalf ~ (r, f) on E V is an isomorphism
of E onto E V V

•

Proof. Note that since {II ' .. . , f,,} is a basis for E V
, it foll ows from the

defin itions that {XI" ' " x,,} is the dual basis in E , so E = E Vv.

Theorem 6.3. Let U, V, W be finite f ree modules over the commutative ring
A. and let

A '"O ~ W~ V~ U ~ O

be an exact sequence of A-homomorphisms . Then the induced sequence
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i.e.

is also exact .

III, §6

Proof This is a consequence of P2 , because a free module is projective.

We now consider properties which have specifically to do with vector spaces,
because we are going to take factor spaces. So we assume that we deal with
vector spaces over a field K .

Let V, V' be two vector spaces, and suppose given a mapping

V x V' --+ K

denoted by
(x, x') 1---+ ( x, x' )

for x E V and x' E V'. We call the mapping bilinear if for each x E V the function
x' 1---+ ( x, x' ) is linear, and similarly for each x' E V' the function x 1---+ ( x, x' ) is
linear. An element x E V is said to be orthogonal (or perpendicular) to a subset
S' of V' if ( x, x' ) = 0 for all x' E S'. We make a similar definition in the
opposite direction. It is clear that the set of x E V orthogonal to S' is a sub
space of V.

We define the kernel of the bilinear map on the left to be the subspace of V
which is orthogonal to V', and similarly for the kernel on the right.

Given a bilinear map as above,

V x V' --+ K ,

let W' be its kernel on the right and let W be its kernel on the left. Let x' be
an element of V'. Then x' gives rise to a functional on V, by the rule x 1---+ ( x, x' ),
and this functional obviously depends only on the coset of x' modulo W' ; in
other words, if x', == x~ (mod W'), then the functionals x 1---+ ( x, x', ) and
x 1---+ ( x, x~ ) are equal. Hence we get a homomorphism

V' ~ V V

whose kernel is precisely W' by definition, whence an injective homomorphism

o~ V'/W' ~ VV.

Since all the functionals arising from elements of V' vanish on W , we can view
them as functionals on V/W , i.e . as elements of (V/W)v . So we actually get an
injective homomorphism

o~ V'/W' ~ (V/ W) v.

One could give a name to the homomorphism

g : V' ~ VV
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such that
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( x, x' ) = <x, g(X'»

for all x E V and x' E V' . However, it will usually be possible to describe it by an
arrow and call it the induced map, or the natural map. Giving a name to it
would tend to make the terminology heavier than necessary.

Theorem 6.4. Let V x V' ~ K be a bilinear map, let W, W' be its kernels
on the left and right respectively, and assume that V' /W' is finite dimensional.
Then the induced homomorphism V' /W' ~ (V/W)v is an isomorphism .

Proof. By symmetry, we have an induced homomorphism

V/W ~ (V '/W')v

which is injective . Since

dim(VI/W')v = dim V'/W'

it follows that V/W is finite dimensional. From the above injective homomor
phism and the other, namely

o~ V'/W' ~ (V/W)v,

we get the inequalities

dim V/W ~ dim V'/W '

and

dim V'/W' ~ dim V/W,

whence an equality of dimensions. Hence our homomorphisms are surjective
and inverse to each other, thereby proving the theorem.

Remark 1. Theorem 6.4 is the analogue for vector spaces of the duality
Theorem 9.2 of Chapter 1.

Remark 2. Let A be a commutative ring and let E be an A-module . Then
we may form two types of dual :

E" = Hom(E , Q/Z) , viewing E as an abelian group;

EV = HomA(E, A), viewing E as an A-module .

Both are called dual, and they usually are applied in different contexts . For
instance, EV will be considered in Chapter Xlll , while E" will be considered in
the theory of injective modules, Chapter XX, §4. For an example of dual module
EV see Exercise 11. If by any chance the two duals arise together and there is
need to distinguish between them, then we may call E" the Pontrjagin dual.
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Indeed , in the theory of topological groups G, the group of continuous homo
morphisms of G into R/Z is the classical Pontrjagin dual , and is classically
denoted by GA, so I find the preservation of that terminology appropriate .

Instead of R/Z one may take other natural groups isomorphic to R/Z . The
most common such group is the group of complex numbers of absolute value 1,
which we denote by 8) . The isomorphism with R/Z is given by the map

Remark 3. A bilinear map V x V~ K for which V' == V is called a bilinear
form. We say that the form is non-singular if the corresponding maps

V' ~ VV and V ~ (V') v

are isomorphisms . Bilinear maps and bilinear forms will be studied at greater
length in Chapter XV. See also Exercise 33 of Chapter XIII for a nice example .

§7. MODULES OVER PRINCIPAL RINGS

Throughout this section, we assume that R is a principal entire ring. All modules
are over R, and homomorphisms are R-homomorphisms, unless otherwise specified.

The theorems will generalize those proved in Chapter I for abelian groups.
We shall a lso point out how the proofs of Chapter I can be adjusted with sub
stitutions of terminology so as to yield proofs in the present case.

Let F be a free module over R, with a basis {XJiEI ' Then the cardinality of
I is uniquely determined, and is called the dimension of F. We recall that this
is proved, say by taking a prime element p in R, and observing that F/ pF is a
vector space over the field R/pR , whose dimension is precisely the cardinality
of I . We may therefore speak of the dimension of a free module over R.

Theorem 7.1. Let F be afree module, and M a submodule. Then M isfree,
and its dimension is less than or equal to the dimension of F.

Proof For simplicity, we give the proof when F has a finite basis {Xi}'
i == 1, . . . , n. Let M, be the intersection of M with (x), .. . , x.) , the module
generated by XI' . . . , x.. Then M I == M n (XI) is a submodule of (XI), and is
therefore of type (alxl) with some al E R. Hence M I is either 0 or free, of di
mension 1. Assume inductively that M, is free of dirnension js r. Let a be
the set consisting of all elements a E R such th at there exists an element X E M
which can be written
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with b,E R. Then a is obviously an ideal , and is principal, generated say by an
element ar + i - Ifar + 1 = 0, then M r + 1 = M, and we are done with the inductive
step. If ar + 1 #- 0, let WE M r + 1 be such that the coefficient of W with respect
to x, + 1 is a,+ I' If x E M r + 1 then the coefficient of x with respect to x, + 1 is
divisible by ar+ 1, and hence there exists c E R such that x - cw lies in Mr.
Hence

On the other hand, it is clear that M r n (w) is 0, and hence that this sum is direct,
thereby proving our theorem. (For the infinite case, see Appendix 2, §2.)

Corollary 7.2. Let E be a finitely generated module and E' a submodule.
Then E' is finitely generated.

Proof We can represent E as a factor module of a free module F with a
finite number of generators : If VI' • •• , Vn are generators of E, we take a free
module F with basis {x1> ' . • ,xn } and map Xi on Vi ' The inverse image of E' in F
is a submodule, which is free, and finitely generated, by the theorem. Hence
E' is finitely generated. The assertion also follows using simple properties of
Noetherian rings and modules.

If one wants to translate the proofs of Chapter I, then one makes the
following definitions. A free I-dimensional module over R is called infinite
cyclic. An infinite cyclic module is isomorphic to R, viewed as module over
itself . Thus every non-zero submodule of an infinite cyclic module is infinite
cyclic . The proof given in Chapter I for the analogue of Theorem 7.1 applies
without further change .

Let E be a module. We say that E is a torsion module if given x E E, there
exists a E R, a #- 0, such that ax = 0. The generalization of finite abelian group
is finitely generated torsion module. An element x of E is called a torsion element
if there exists a E R, a #- 0, such that ax = 0.

Let E be a module . We denote by E tor the submodule consisting of all torsion
elements of E, and call it the torsion submodule of E. If Etor = 0, we say that
E is torsion free .

Theorem 7.3. Let E be finitely generated . Then E/ Etor is free . There exists
a free submodule F of E such that E is a direct sum

E = Etor E9 F .

The dimension of such a submodule F is uniquely determined .

Proof. We first prove that E/Etor is torsion free . If x E E, let i denote its
residue class mod Etor' Let b E R , b *°be such that bi = 0. Then bx E Etop

and hence there exists c E R , c * 0, such that cbx = 0. Hence x E Etor and
i = 0, thereby proving that E/Etor is torsion free . It is also finitely generated.
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Assume now that M is a torsion free module which is finitely generated . Let
{VI' . . . , vn } be a maximal set of elements of M among a given finite set of
generators {YI' .. . , Ym} such that {VI' ... , Vn} is linearly independent. If Y is
one of the generators, there exist elements a, b l , • . . , bn E R not all 0, such that

ay + biv i + ... + b;»; = 0.

Then a =1= °(otherwise we contradict the linear independence of VI' . .. , vn) .

Hence ay lies in (VI' . . . ,vn) . Thus for each j = 1, , m we can find aj E R,
aj =1= 0, such that ajYj lies in (VI" ' " vn) . Let a = a l am be the product. Then
aM is contained in (VI"", vn) , and a =1= 0. The map

X 1--+ax

is an injective homomorphism, whose image is contained in a free module.
This image is isomorphic to M , and we conclude from Theorem 7.1 that M is
free, as desired .

To get the submodule F we need a lemma.

Lemma 7.4. Let E, E' be modules, and assumethat E' isfree. Let f :E ~ E'
be a surjectivehomomorphism. Then there exists afree submodule F ofE such
that the restriction offto F induces an isomorphism ofF with E', and such that
E = F ED Kerf.

Proof. Let {x;Ler be a basis of E'. For each i, let x, be an element of E such
that j'(x.) = x;. Let F be the submodule of E generated by all the elements Xi'

i E I. Then one sees at once that the family of elements {Xj}jel is linearly inde
pendent, and therefore that F is free. Given x E E, there exist elements a, E R
such that

Then x - La.x, lies in the kernel off, and therefore E = Kerf + F. It is clear
that Kerf(\ F = 0, and hence that the sum is direct , thereby proving the lemma.

We apply the lemma to the homomorphism E~ E/Etor in Theorem 7.3 to
get our decomposition E = Etor E9 F . The dimension of F is uniquely determined,
because F is isomorphic to E/Etor for any decomposition of E into a direct sum
as stated in the theorem .

The dimension of the free module F in Theorem 7.3 is called the rank of E.
In order to get the structure theorem for finitely generated modules over R,

one can proceed exactly as for abelian groups. We shall describe the dictionary
which allows us to transport the proofs essentially without change.

Let E be a module over R. Let x E E. The map a 1--+ax is a homomorphism
of R onto the submodule generated by x, and the kernel is an ideal, which is
principal, generated by an element mER. We say that m is a period of x. We
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note that m is determined up to multiplication by a unit (if m =1= 0). An element
c E R, c =1= 0, is said to be an exponent for E (resp. for x) if cE = 0 (resp. cx = 0).

Let p be a prime element. We denote by E(P) the submodule of E consisting
of all elements x having an exponent which is a power pr(r ~ 1). A p-submodule
of E is a submodule contained in E(p).

We select once and for all a system of representatives for the prime elements
of R (modulo units) . For instance, if R is a polynomial ring in one variable over
a field, we take as representatives the irreducible polynomials with leading
coefficient 1.

Let mER, m =1= O. We denote by Em the kernel ofthe map x H mx. It consists
of all elements of E having exponent m.

A module E is said to be cyclic if it is isomorphic to RI(a) for some element
a E R. Without loss of generality if a =1= 0, one may assume that a is a product of
primes in our system of representatives, and then we could say that a is the order
of the module.

Let r I ' . . . , rs be integers ~ 1. A p-module E is said to be of type

(P'I, ... , prs )

if it is isomorphic to the product of cyclic modules RI(pri
) (i = 1, .. . , s). If p

is fixed, then one could say that the module is of type (r l , ... , rs) (relative to p).
All the proofs of Chapter I, §8 now go over without change. Whenever we

argue on the size of a positive integer m, we have a similar argument on the
number of prime factors appearing in its prime factorization . If we deal with a
prime power r' . we can view the order as being determined by r, The reader
can now check that the proofs of Chapter I, §8 are applicable .

However, we shall develop the theory once again without assuming any
knowledge of Chapter I, §8. Thus our treatment is self-contained.

Theorem 7.5. Let E be a finitely generated torsion module =1= O. Then E is
the direct sum

E = EB E(p),
p

taken overall primesp such that E(p) =1= 0. Each E(p) canbe written as a direct
sum

E(p) = RI(pVI) EEl .. . EEl RI(pVs )

with 1 ~ VI ~ ••• ~ VS ' The sequence VI' • •• , Vs is uniquely determined.

Proof Let a be an exponent for E, and suppose that a = bewith (b, c) = (1).
Let x, y E R be such that

1 = xb + yc.
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We contend that E = Eb EB Ec • Our first assertion then follows by induction,
expressing a as a product of prime powers. Let VE E. Then

v = xbv + ycv.

Then xbv E E, because cxbv = xav = 0. Similarly, ycv E Eb • Finally Eb n E, = 0,
as one sees immediately. Hence E is the direct sum of Eb and Ec•

We must now prove that E(p) is a direct sum as stated. If YI' .. . , Ym are
elements of a module, we shall say that they are independent if whenever we have
a relation

alYI + ... + amYm = 0

with ai E R, then we must have aiYi = 0 for all i. (Observe that independent
does not mean linearly independent.) We see at once that YI' . . . , Ym are inde
pendent if and only if the module (y I' . . . , Ym) has the direct sum decomposition

in terms of the cyclic modules (Yi), i = 1, . . . , m.
We now have an analogue of Lemma 7.4 for modules having a prime power

exponent.

Lemma 7.6. Let E be a torsion moduleojexponent p' (r ~ 1)Jor some prime
element p. Let XI E E be an element oj period pro Let E = E/(x l). Let
jil" ' " jim be independent elements ojE. Then for each i there exists a repre
sentative Yi E E ofYb such that the period ofYi is the same as the period ofYi'
The elements XI> YI, "" Ymare independent.

Proof Let yE Ehave period pn for some n ~ 1. Let Y be a representative of
yin E. Then pny E (XI)' and hence

cER, p{c,

for some s ~ r. If s = r, we see that Y has the same period as Y. If s < r, then
p'cx, has period p'-s, and hence Y has period pn+,-s. We must have

n + r - s ~ r,

because p' is an exponent for E. Thus we obtain n ~ s, and we see that

is a representative for y, whose period is p".
Let Yi be a representative for Yi having the same period. We prove that

XI' YI, ' . . , Ym are independent. Suppose that a, al, ' . . , am E R are elements such
that

aXI + alYI + .. . + amYm = O.
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Then
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alYI + ... + amYm = O.

By hypothesis, we must have ajYi = 0 for each i. If pr j is the period of Yi, then
prj divides a.. We then conclude that ajYi = 0 for each i, and hence finally
that ax I = 0, thereby proving the desired independence.

To get the direct sum decomposition of E(p), we first note that E(p) is
finitely generated. We may assume without loss of generality that E = E(p).
Let XI be an element of E whose period pr, is such that r l is maximal. Let
E = E/(x I) ' We contend that dim n, as vector space over R/pR is strictly less
than dim Ep • Indeed, if YI' . . . , Ym are linearly independent elements of Ep

over R/pR , then Lemma 7.6 implies that dim Ep ~ m + 1 because we can always
find an element of (XI) having period p, independent of YI, . . . , Ym ' Hence
dim Ep < dim Ep • We can prove the direct sum decomposition by induction.
IfE #- 0, there exist elements x2 , •• • , X. having periods pr2

, • •• , pr, respectively,
such that r2 ~ .. . ~ rs• By Lemma 7.6, there exist representatives x2, . . . , x;
in E such that x, has period pr jand XI " .. , x, are independent. Since pr, is such
that r l is maximal, we have r l ~ r2 , and our decomposition is achieved.

The uniqueness will be a consequence of a more general uniqueness theorem,
which we state next.

Theorem 7.7. Let E be a finitely generated torsion module, E #- O. Then
E is isomorphic to a direct sum ofnon-zerofactors

R/(ql) \!3 .. . \!3 R/(qr),

where q\ , .. . ,qr are non-zero non-units of R, and q\ 1q21.. · 1qr. The se
quence of ideals (q\) , .. . , (qr) is uniquelydeterminedby the above conditions.

Proof. Using Theorem 7.5 , decompose E into a direct sum ofp-submodules,
say E(PI) EB . . . EB E(p,), and then decompose each E(P i) into a direct sum of
cyclic submodules of periods pi li . We visualize these symbolically as described
by the following diagram :

E(p,) : r /l ~ r/ 2 ~ . ..

A horizontal row describes the type of the.module with respect to the prime at
the left. The exponents rij are arranged in increasing order for each fixed
i = 1, . .. , I. We let ql ' ... , q, correspond to the columns of the matrix of
exponents, in other words
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The direct sum of the cyclic modules represented by the first column is then
isomorphic to Rj(ql), because, as with abelian groups, the direct sum of cyclic
modules whose periods are relatively prime is also cyclic. We have a similar
remark for each column, and we observe that our proof actually orders the qj
by increasing divisibility , as was to be shown.

Now for uniqueness. Let p be any prime, and suppose that E = Rj(pb) for
some b e R, b =f:. O. Then Ep is the submodule bRj(pb), as follows at once from
unique factorization in R. But the kernel of the composite map

R --. bR --. bRj(pb)

is precisely (p). Thus we have an isomorphism

Rj(p) ;:::: bRj(pb) .

Let now E be expressed as in the theorem, as a direct sum of r terms. An
element

is in Ep if and only if PVi = 0 for all i. Hence Ep is the direct sum of the kernel of
multiplication by p in each term. But Ep is a vector space over Rj(p), and its
dimension is therefore equal to the number of terms Rj(q;) such that p divides qi'

Suppose that p is a prime dividing ql ' and hence qi for each i = 1,.. . , r . Let
E have a direct sum decomposition into d terms satisfying the conditions of the
theorem, say

E = Rj(q'l) EB . .. EB Rj(q~).

Then p must divide at least r of the elements qj, whence r ~ s. By symmetry,
r = s, and p divides qj for all j .

Consider the module pE. By a preceding remark, if we write qi = pbi' then

pE ;:::: Rj(b l) EB . .. EB Rj(br ) ,

and bll·· · Ibr • Some of the b, may be units, but those which are not units
determine their principal ideal uniquely, by induction. Hence if

but (b j + 1) =f:. (1), then the sequence of ideals
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is uniquely determined . Thi s proves our uniqueness statement , and concludes
the proof of Theorem 7.7 .

The ideals (ql), . . . , (qr) are called the invariants of E .
For one of the main applications of Theorem 7.7 to linear algebra , see Chapter

XV, §2.
The next theorem is included for completeness. It is called the elementary

divisors theorem.

Theorem 7.8. Let F be afree module over R, and let M be afinitely generated
submodule * O. Then there exists a basis <B of F , elements e l' .. . , em in this
basis, and non-zero elements ai' . .. . am E R such that :

(i) The elements ale" .. . , amemform a basis of Mover R.

(ii) We have ailaHtfor i = 1, . . . , m - l.

The sequence of ideals (al) ' . .. • (am) is uniquely determined by the preceding
conditions .

Proof. Write a finite set of generators for M as linear combination of a finite
number of elements in a basis for F. These elements generate a free submodule
of finite rank, and thus it suffices to prove the theorem when F has finite rank,
which we now assume . We let n = rank(F) .

The uniqueness is a corollary of Theorem 7 .7 . Suppose we have a basis as
in the theorem. Say at, , as are unit s, and so can be taken to be = 1, and

as+j = qj with ql lq21 I qr non-units . Observe that F/M = F is a finitely
generated module over R, having the direct sum expression

r

F / M = F = EB (R/ qjR)ej EB free module of rank n - (r + s)
j= I

where a bar denotes the class of an element of F mod M . Thus the direct sum
over j = 1, . .. , r is the tor sion submodule of P, whence the elements ql' . .. ,

qr are uniquely determined by Theorem 7.7. We have r + s = m, so the rank
of F/M is n - m, which determines m uniquely . Then s = m - r is uniquely
determined as the number of units among ai ' ... , am' This proves the uniqueness
part of the theorem. Next we prove existence .

Let A be a functional on F, in other words, an element of HomR(F, R). We
let J A = A(M) . Then h is an ideal of R. Select AI such that AI(M) is maximal
in the set of ideals {JA}, that is to say , there is no properly larger ideal in the
set {h}.

Let AI(M) = (a l) . Then al i= 0, because there exists a non-zero element of
M , and expressing this element in terms of some basis for F over R, with some
non-zero coordinate, we take the projection on this coordinate to get a func
tional whose value on M is not 0. Let XI EM be such that AI(X1) = al ' For
any functional g we must have g(x 1 ) E (a 1) [immediate from the maximality of
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Al (M)]. Writing x I in terms of any basis of F, we see that its coefficients must
all be divisible by a l. (If some coefficient is not divisible by aI' project on this
coefficient to get an impossible functional.) Therefore we can write X I = aIel
with some element e. E F.

Next we prove that F is a direct sum

F = ReI EEl Ker AI '

Since AI(e l) = 1, it is clear that ReI n Ker Al = O. Furthermore, given X EF
we note that X - AI(x)el is in the kernel of ~I ' Hence F is the sum of the in
dicated submodules, and therefore the direct sum.

We note that Ker Al is free , being a submodule of a free module (Theorem
7.1). We let

F) = Ker A) and M I = M n Ker A).

We see at once that M = RXI EEl M).

Thus M) is a submodule of F J and its dimension is one less than the dimension
of M. From the maximality condition on AI (M), it follows at once that for any
functional A. onF), the image A.(M)will be contained in A)(M) (because otherwise,
a suitable linear combination of functionals would yield an ideal larger than
(a)). We can therefore complete the existence proof by induction.

In Theorem 7.8, we call the ideals (a,), . . . , (am) the invariants of Min F .
For another characterization of these invariants , see Chapter XIII , Proposition
4.20 .

Example. First, see examples of situations similar to those of Theorem 7.8
in Exerci ses 5, 7 , and 8, and for Dedekind rings in Exercise 13.

Example. Another way to obtain a module M as in Theorem 7.8 is as
a module of relations. Let W be a finitely generated module over R, with genera
tors w., ..., Wno By a relation among {wI' • •• , Wn} we mean an element
(ai ' . . . , an) E R" such that L aiwi = O. The set of such relations is a sub
module of R", to which Theorem 7.8 may be applied.

It is also possible to formulate a proof of Theorem 7.8 by considering M as
a submodule of R", and applying the method of row and column operations to
get a desired basis. In this context, we make some further comments which may
serve to illustrate Theorem 7.8. We assume that the reader is acquainted with
matrices over a ring. By row operations we mean: interchanging two rows ;
adding a multiple of one row to another; multiplying a row by a unit in the ring.
We define column operations similarly. These row and column operations
correspond to multiplication with the so-called elementary matrices in the ring .

Theorem 7.9. Assume that the elementary matrices in R generate GLn(R).
Let (xij) be a non- zero matrix with components in R. Then with a finite
number of row and column ope rations, it is possible to bring the matrix to
the form
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o
o

o
with al . .. am "" 0 and al la21... Ia.;

o
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o
o

o
o

o

We leave the proof for the reader. Either Theorem 7.9 can be viewed as
equivalent to Theorem 7.8, or a direct proof may be given . In any case, Theorem
7.9 can be used in the following context. Consider a system of linear equations

with coefficients in R . Let F be the submodule of R n generated by the vectors
X = (x,, .. . , xn ) which are solutions of this system. By Theorem 7.1, we know
that F is free of dimension ~ n. Theorem 7.9 can be viewed as providing a
normalized basis for F in line with Theorem 7.8.

Further example. As pointed out by Paul Cohen , the row and column
method can be applied to module s over a power serie s ring o[[X]], where 0 is
a complete discrete valuation ring . Cf. Theorem 3.1 of Chapter 5 in my Cyclo
tomic Fields I and II (Springer Verlag , 1990). For instance , one could pick 0 it
self to be a power serie s ring k[[T]] in one variable over a field k, but in the
theory of cyclotomic fields in the above reference, 0 is taken to be the ring of
p-adic integers. On the other hand, George Bergman has drawn my attention to
P. M. Cohn's "On the structure of G~ of a ring, " IHES Publ. Math. No. 30
(1966), giving examples of principal rings where one cannot use row and column
operations in Theorem 7.9 .

§8. EULER-POINCARE MAPS

The present section may be viewed as providing an example and application
of the Jordan-Holder theorem for modules. But as pointed out in the examples
and references below , it also provides an introduction for further theories .

Again let A be a ring. We continue to consider A-modules. Let r be an
abelian group, written additively. Let cp be a rule which to certain modules
associates an element of I', subject to the following condition:
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IfO -+ M' -+ M -+ M" -+ 0 is exact, then qJ(M) is defined ifand only if qJ(M')
and qJ(M") are defined, and in that case, we have

qJ(M) = qJ(M') + qJ(M").

Furthermore qJ(O) is defined and equal to O.

Such a rule qJ will be called an Euler-Poincare mapping on the category of
A-modules . If M' is isomorphic to M , then from the exact sequence

o-+ M' -+ M -+ 0 -+ 0

we conclude that qJ(M') is defined if qJ(M) is defined, and that qJ(M') = qJ(M).
Thus if qJ(M) is defined for a module M, qJ is defined on every submodule and
factor module of M. In particular, if we have an exact sequence of modules

M' -+ M -+ M"

and if qJ(M') and qJ(M") are defined, then so is qJ(M), as one sees at once by
considering the kernel and image of our two maps, and using the definition.

Examples. We could let A = Z, and let qJ be defined for all finite abelian
groups, and be equal to the order of the group. The value of qJ is in the multi
plicative group of positive rational numbers.

As another example, we consider the category of vector spaces over a field k.
We let qJ be defined for finite dimensional spaces, and be equal to the dimension.
The values of cp are then in the additive group of integers .

In Chapter XV we shall see that the characteristic polynomial may be con
sidered as an Euler-Poincare map.

Observe that the natural map of a finite module into its image in the Groth
endieck group defined at the end of §4 is a universal Euler-Poincare mapping.
We shall develop a more extensive theory of this mapping in Chapter XX, §3.

If M is a module (over a ring A), then a sequence of submodules

is also called a finite filtration, and we call r the length of the filtration. A module
M is said to be simple if it does not contain any submodule other than 0 and M
itself, and if M :F O. A filtration is said to besimple if each MdM,+ 1 is simple.
The Jordan-HOlder theorem asserts that two simple filtrations of a module are
equivalent.

A module M is said to be of finite length if it is 0 or if it admits a simple
(finite) filtration . By the Jordan-Holder theorem for modules (proved the same
way as for groups), the length of such a simple filtration is uniquely deter
mined, and is called the length of the module. In the language of Euler charac
teristics, the Jordan-Holder theorem can be reformulated as follows:
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Theorem 8.1. Let ip be a rule which to each simple module associates an
element oja commutative group r ,and such that if M ~ M' then

cp(M) = cp(M').

Then cp has a unique extension to an Euler-Poincare mapping defined on all
modules oJ finite length.

Proof Gi ven a simple filtration

we define
r - 1

cp(M) = Lcp(MJM i + I}'
i = 1

The Jordan-Holder theorem shows immediately that thi s is well-defined, and
that this extension of cp is an Euler-Poincare map.

In particular, we see that the length function is the Euler-Poincare map
taking its values in the additive group of integers, and having the value 1 for an y
simple module.

§9. THE SNAKE LEMMA

This section give s a very general lemma, which will be used many times ,
so we extract it here . The reader may skip it until it is encountered, but already
we give some exercises which show how it is applied: the five lemma in Exercise
15 and also Exercise 26. Other substantial applications in this book will occur
in Chapter XVI , §3 in connection with the tensor product , and in Chapter XX
in connection with complexes, resolutions, and derived funct ors .

We begin with routine comments . Consider a commutative diagram of homo
morphisms of modules .

N'---,;-+ N

Then f induces a homomorphism

Ker d' ~ Ker d.

Indeed, suppose d'x' = O. Then df (x' } = 0 because df (x' } = hd'(x' } = o.
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Similarly, h induces a homomorphism

Coker d' ~ Coker d

in a natural way as follows. Let y' E N' represent an element of N' / d' M'. Then
hy ' mod dM does not depend on the choice of y' representing the given element ,
because if y" = y' + d'x', then

hy" = hy ' + hd'x' = hy' + dfx' == hy ' mod dM.

Thus we get a map

h* : N' /d'M' = Coker d' ~ N/dM = Coker d ,

which is immediately verified to be a homomorphism.
In practice, given a commutative diagram as above , one sometimes writes f

instead of h, so one writes f for the horizontal maps both above and below the
diagram . This simplifies the notation , and is not so incorrect: we may view
M', N' as the two components of a direct sum, and similarly for M, N . Thenf
is merely a homomorphism defined on the direct sum M' E9 N' into M E9 N .

The snake lemma concerns a commutative and exact diagram called a snake
diagram:

o-----+ N' -----+ N -----+ N il
f 9

Let Z" E Ker d', We can construct elements of N' as follows. Since 9 is
surjective, there exists an element z E M such that gz = Z" . We now move
vertically down by d , and take dz . The commutativity (/'g = gd shows that
gdz = 0 whence dz is in the kernel of 9 in N. By exactness, there exists an
element z' EN' such thatfz ' = dz . In brief, we write

Of course, z' is not well defined because of the choices made when taking inverse
images . However, the snake lemma will state exactly what goes on.

Lemma 9.1. (Snake Lemma). Given a snake diagram as above, the map

J : Ker d" ~ Coker d'

induced by oz" = / -1 0 d o«' z" is well defined, and we have an exact sequence

Ker d' - Ker d - Ker d" ~ Coker d' - Coker d - Coker d"

where the maps besides c5 are the natural ones .
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Proof . It is a routine verification that the class of z' mod Irn d' is in
dep end ent of th e choices made when ta king inverse images, whence defin ing
the map 6. The proof of the exac tness of the sequence is then routine, and
consists in chasing around diagram s. It should be carried out in full detail
by the reader who wishes to acquire a feeling for thi s type of tr ivialit y. As an
example, we sha ll prove th at

Ker 0 C Im 9*

where g* is the indu ced map on kernels. Suppose the image of z" is 0 in Coker
d', By definition, there exists u' E M' such that Z' = d' u'. Then

dz = fZI = fd'u' = dfu'

by commutativity. Hence
d(z - fu ') = 0,

and z - [u ' is in the kernel of d. But g(z - fu ') = gz = z", This means that z" is
in the image of g*, as desired . All the remaining cases of exactness will be left
to the reader.

The original snake diagr am may be completed by writing in the kernels
and cokernels as follow s (whence the name of the lemm a) :

o

Ker d"

Coker dCoker d

Ker d' -----+ Ker d

Co er d

-----+

j j I
M ' -----+ M -----+ M"- --+

N' -----+ N -----+ N"

I I I
k ' -----+ -----+ "

o

§10. DIRECT AND INVERSE LIMITS

We return to limits, which we considered for groups in Chapter 1. We now
con sider limits in other categories (rings, modules), and we point out that limits
satisfy a universal property , in line with Chapter I , §11.

Let I = {i} be a directed system of indice s , defined in Chapter I , §lO. Let
a be a catego ry , and {AJ a family of objects in a. For each pair i , j such that



160 MODULES

i ~ j assume given a morphism

f ) :Ai --+ Aj

such that, whenever i ~ j ~ k, we have

h 0 f ) = f~ and f: = id.

III, §10

Such a family will be called a directed family of morphisms. A direct limit
for the family {f)} is a universal object in the following category e . Ob(e)
consists of pairs (A, (f i» where A E Ob(Ci) and (l) is a family of morphisms
l :Ai --+ A, i E I , such that for all i ~ j the following diagram is commutative :

(Universal of course means universally repelling .)
Thus if (A, u» is the direct limit, and if (B, (gi» is any object in the above

category, then there exists a unique morphism tp : A --+ B which makes the
following diagram commutative :

For simplicity, one usually writes

omitting the f ) from the notation.

Theorem 10.1. Direct limits exist in the categoryofabelian groups, or more
generally in the category of modules over a ring.

Proof Let {MJ be a directed system of modules over a ring. Let M be
their direct sum. Let N be the submodule generated by all elements

xi) = (. . . ,0, x, 0, . . . , -fj(x) , 0, .. .)
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where, for a given pair of indices (i,j) with j f; i, Xij has component x in M;.
J)(x) in M j , and component 0 elsewhere. Then we leave to the reader the veri
fication that the factor module MIN is a direct limit, where the maps of M; into
MIN are the natural ones arising from the composite homomorphism

Example. Let X be a topological space, and let x E X. The open neigh
borhoods of x form a directed system, by inclusion. Indeed, given two open
neighborhoods U and V, then U n V is also an open neighborhood contained in
both U and V. In sheaf theory, one assigns to each U an abelian group A(U) and
to each pair U => V a homomorphism h~ : A (U) -t A (V) such that if U => V => W
then hw o h~ = hI(, . Then the family of such homomorphisms is a directed family.
The direct limit

lim A(U)
U

is called the stalk at the point x. We shall give the formal definition of a sheaf
of abelian groups in Chapter XX, §6. For further reading, I recommend at least
two references. First, the self-contained short version of Chapter II in Hartshorne's
Algebraic Geometry, Springer Verlag, 1977. (Do all the exercises of that section,
concerning sheaves .) The section is only five pages long . Second, I recommend
the treatment in Gunning's Introduction to Holomorphic Functions of Several
Variables, Wadsworth and Brooks/Cole, 1990.

We now reverse the arrows to define inverse limits. We are again given a
directed set I and a family of objects Ai' Ifj f; i we are now given a morphism

satisfying the relations

Ji 0 J{= Jland Ji = id,

if j f; i and i f; k. As in the direct case, we can define a category of objects
(A , /;) with /;: A -+ Ai such that for all i, j the following diagram is com
mutative :

A universal object in this category is called an inverse limit of the system (A i,J)).
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As before, we often say that

A = limA ;
i

is the inverse limit, omitting thef~ from the notation.

III, §10

Theorem 10.2. Inverse limits exist in the category of groups. in the category
of modules over a ring, and also in the category of rings.

Proof. Let {GJ be a directed family of groups , for instance, and let r be
their inverse limit as defined in Chapter I, §10. Let Pi: r - G, be the projection
(defined as the restriction from the projection of the direct product. since r is
a subgroup of I1 Gi ) . It is routine to verify that these data give an inverse limit
in the category of groups. The same construction also applies to the category of
rings and modules.

Example. LetPbe a prime number . For n~ m we have a canonical surjective
ring homomorphism

f::' : Z/pnZ - Z/pmz .

The projective limit is called the ring of p-adic integers, and is denoted by Zp
For a consideration of this ring as a complete discrete valuation ring, see Exercise
17 and Chapter XII .

Let k be a field. The power series ring k[[T]] in one variable may be viewed
as the inverse limit of the factor polynomial rings k[T]/(Tn) , where for n ~ m
we have the canonical ring homomorphism

A similar remark applies to power series in several variables .
More generally, let R be a commutative ring and let J be a proper ideal. If

n ~ m we have the canonical ring homomorphism

f::': R/r - R/Jm.
Let RJ = lim R/In be the inverse limit. Then R has a natural homomorphism
into RJ • If R is a Noetherian local ring, then by Krull 's theorem (Theorem 5.6
of Chapter X), one knows that nJ n = {OJ, and so the natural homorphism of R
in its completion is an embedding. This construction is applied especially when
J is the maximal ideal. It gives an algebraic version of the notion of holomorphic
functions for the following reason .

Let R be a commutative ring and J a proper ideal. Define a J-Cauchy se
quence {xn } to be a sequence of elements of R satisfying the following condition.
Given a posit ive integer k there exists N such that for all n, m ~ N we have
Xn - Xm E r, Define a null sequence to be a sequence for which given k there
exists N such that for all n ~ N we have Xn E r, Define addition and multipli-
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cation of sequences termwise. Then the Cauchy sequences form a ring e, the
null sequences form an ideal X, and the factor ring e/x is called the J-adic
completionof R. Prove these statements as an exerci se , and also prove that there
is a natural isomorphism

e/x "" lim st)».

Thus the inverse limit limR/r is also called theJ-adic completion. See Chapter
XII for the completion in the context of absolute value s on fields.

Examples. In certain situations one wants to determine whether there exist
solutions of a system of a polynomial equationf(X l ' .. . ,Xn ) =0 with coefficients
in a power series ring k[[T]], say in one variable. One method is to consider the
ring mod (TN), in which case this equation amounts to a finite number of equations
in the coefficients . A solution of f(X) = 0 is then viewed as an inverse limit of
truncated solutions . For an early example of this method see [La 52], and for
an extension to several variables [Ar 68] .

[La 52) S. LANG, On quasi algebraic closure , Ann of Math . 55 (1952 ), pp. 373-390

[Ar 68) M. ARTlN, On the solutions of analytic equations, Invent . Math. 5 (1968) , pp.
277-291

See also Chapter XII , §7.

In Iwasawa theory , one considers a sequence of Galois cyclic extensions K;
over a number field k of degree v" with p prime , and with K; C Kn+ l • Let G;
be the Galois group of K; over k. Then one takes the inver se limit of the group
rings (Z / pnZ )[Gn], following Iwasawa and Serre . Cf. my Cyclotomic Fields ,
Chapter 5. In such towers of fields, one can also consider the projective limits
of the modules mentioned as examples at the end of §1. Specifically , consider
the group of pn-th roots of unity IJ.pn , and let K; = Q(lJ.pn+I), with Ko = Q(lJ.p)'
We let

Tp(lJ.) = lim IJ.pn

under the homomorphisms IJ.pn +\ ~ IJ.pn given by ,~ (f' . Then Tp(lJ.) becomes
a module for the projective limit s of the group rings. Similarly, one can consider
inverse limits for each one of the modules given in the examples at the end of
§1. (See Exercise 18.) The determination of the structure of these inverse limits
leads to fundamental problems in number theory and algebraic geometry .

After such examples from real life after basic algebra , we return to some
general considerations about inverse limits .

Let (Ai' I{) = (Ai) and (B io g{) = (B i) be two inverse systems of abelian
groups indexed by the same indexing set. A homomorphism (Ai) -+ (B i) is the
obv ious thing, namely a family of homomorphisms
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for each i which commute with the maps of the inverse systems :

A sequence

III, §10

is said to be exact if the corresponding sequence of groups is exact for each i.
Let (An) be an inverse system of sets, indexed for simplicity by the positive

integers, with connecting maps

We say that this system satisfies the Mittag-Lefller condition ML if for each n,
the decreasing sequence um,n(Am) (m ~ n) stabilizes, i.e. is constant for m
sufficiently large . This condition is satisfied when um ,n is surjective for all m,
n.

We note that trivially, the inverse limit functor is left exact , in the sense that
given an exact sequence

then

is exact.

Proposition 10.3. Assume that (An) satisfies ML. Given an exact sequence

of inverse systems, then

is exact.

Proof The only point is to prove the surjectivity on the right. Let (en) be
an element of the inverse limit. Then each inverse image g-l(Cn) is a coset of
An, so in bijection with An. These inverse images form an inverse system, and
the ML condition on (An) implies ML on (g-l(Cn». Let S; be the stable subset

s, = nu~.n<g-l(cm» '
m~n
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Then the connecting maps in the inverse system (Sn) are surjective, and so there
is an element (bn) in the inverse limit. It is immediate that 9 maps this element
on the given (c.), thereby concluding the proof of the Proposition.

Proposition 10.4. Let (Cn) be an inverse system ofabelian groups satisfying
ML, and let (um ,n) be the system of connecting maps . Then we have an exact
sequence

TI I-uTIo-+ lim C, -+ C, ---+ C, -+ O.

Proof. For each positive integer N we have an exact sequence with a finite
product

N N

o-+ lim c, -+ TI c, .:=.: TI c, -+ O.
l~n~N n=1 n=1

The map u is the natural one, whose effect on a vector is

(0, . . . ,0, cm, 0, .. . , 0) f-+ (0, . . . , 0, um ,m -Icm , 0, . . . , 0).

One sees immediately that the sequence is exact. The infinite products are in
verse limits taken over N. The hypothesis implies at once that ML is satisfied
for the inverse limit on the left , and we can therefore apply Proposition 10.3 to
conclude the proof.

EXERCISES

1. Let V be a vector space over a field K , and let U, W be subspaces . Show that

dim U + dim W = dim(U + W) + dim(U n W).

2. Generalize the dimension statement of Theorem 5.2 to free modules over a non zero
commutative ring. [Hint: Recall how an analogous statement was proved for free
abelian groups, and use a maximal ideal instead ofa prime number.]

3. Let R be an entire ring containing a field k as a subring. Suppose that R is a finite
dimensional vector space over k under the ring multiplication. Show that R is a field.

4. Direct sums.
(a) Prove in deta il that the condit ions given in Proposition 3.2 for a sequence to

split are equivalent. Show that a sequence 0 ~ M' -4 M ~ M" ~ 0 splits if
and only if there exists a submodule N of M such that M is equal to the direct
sum Im fE9 N , and that if this is the case, then N is isomorphic to M". Complete
all the detail s of the proof of Proposit ion 3.2 .
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(b) Let E and E;(i = I, ... , m) be modules over a ring. Let 'Pi : E, ~ E and
r/J;: E ~ E; be homomorphisms having the following properties :

r/Jjo (fJj = id,

m

I (fJj 0 I/Ij = id.
i=J

if i oF j ,

Show that the map x H (r/JIJC,• •• , I/Imx) is an isomorphism of E onto the direct product
of the E, (i = I, .. . , m), and that the map

is an isomorphism of this direct product onto E.
Conversely , if E is equal to a direct product (or direct sum) of submodules

E; (i = I, .. . , m) , if we let 'P; be the inclusion of E, in E, and r/J; the project ion of
Eon E;, then these maps satisfy the above-mentioned propertie s.

5. Let A be an additive subgroup of Euclidean space R",and assume that in every bounded
region of space, there is only a finite number of elements of A. Show that A is a free
abelian group on ~ n generators. [Hint: Induction on the maximal number of
linearly independent elements of A over R. Let VI ' . . . , Vm be a maximal set of such
elements, and let Ao be the subgroup of A contained in the R-space generated by
VI>• •• ,Vm-I' By induction, one may assume that any element of Ao is a linear integral
combination of VI ' " ' ' Vm-I' Let S be the subset of elements V E A of the form
V = aiv i + ... + amVm with real coefficients aj satisfying

o~ a, < 1

O~am~l.

if i = 1, . . . , m - 1

Ifv;" is an element of S with the smallest am oF 0, show that {VI> ••• , Vm _ I ' v;,,} is a basis
of A over Z.]

Note . The above exercise is applied in algebraic number theory to show that the
group of units in the ring of integers of a number field modulo torsion is isomorphic
to a lattice in a Euclidean space. See Exercise 4 of Chapter VII.

6. (Artin-Tate). Let G be a finite group operating on a finite set S. For w E S, denote
1 . w by [w], so that we have the direct sum

Z(S) = L: Z[w] .
weS

Define an action of G on Z(S) by defining CT[W] = [CTW] (for wE S), and extending
CT to Z(S) by linearity. Let M be a subgroup of Z(S) of rank #[S] . Show that M has
a Z-basis {YW}WE S such that UYw = Yow for all WE S. (Cf. my Algebraic Number
Theory, Chapter IX, §4, Theorem I.)

7. Let M be a finitely generated abelian group. By a semi norm on M we mean a real
valued function v H Iv I satisfying the following properties:
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Ivl ~ 0 for all v E M;

Invl = Inl Ivl for n E Z;

Iv + W I ~ IvI + IW I for all v, W EM.

By the kernel of the seminorm we mean the subset of elements v such that Iv I = O.
(a) Let Mo be the kernel. Show that Mo is a subgroup. If Mo = {O}, then the

semi norm is called a norm .
(b) Assume that M has rank r. Let VI " ' " vr E M be linearly independent over

Z mod Mo. Prove that there exists a basis {WI" '" Wr} of MIMo such that

;

Iw;1 ~ ~ IvJ
j ~ 1

[Hint : An explicit version of the proof of Theorem 7.8 gives the result.
Without loss of generality, we can asume Mo = {O}. Let MI = (VI " '" vr) .

Let d be the exponent of MIMI ' Then dM has a finite index in M I ' Let nj.j
be the smallest positive integer such that there exist integers nj , I ' . . . , nj.j_1
satisfying

Without loss of generality we may assume 0 ~ nj .k ~ d - I . Then the elements
WI " ' " W r form the desired basis.]

8. Consider the multiplicative group Q* of non-zero rational numbers . For a non-zero
rational number x = alb with a, b E Z and (a, b) = I , define the height

h(x) = log max(]«] , Ibi) .

(a) Show that h defines a seminorm on Q*, whose kernel cons ists of ± 1 (the
torsion group).

(b) Let M I be a finitely generated subgroup of Q*, generated by rational numbers
XI ' • •• , xm . Let M be the subgroup of Q* consisting of those elements X such
that X S E M 1 for some positive integer s . Show that M is finitely generated,
and using Exercise 7, find a bound for the seminorm of a set of generators
of M in terms of the seminorms of x I ' . . . , xm .

Note. The above two exerci ses are applied in questions of diophantine
approximation . See my Diophantine approximation on toruses, Am. J. Math .
86 (1964) , pp . 521-533 , and the discussion and references 1 give in Ency
clopedia ofMathematical Sciences, Number Theory III , Spr inger Verlag , 1991,
pp . 240-243 .

Localization

9. (a) Let A be a commutative ring and let M be an A-module . Let S be a multiplicative
subset of A. Define S-I M in a manner analogous to the one we used to define
S-IA, and show that S-IM is an S-IA-module .

(b) If 0 ~ M' ~ M ~ M il ~ 0 is an exact sequence, show that the sequence
o~ S-IM' ~ S-IM ~ S-IM" ~ 0 is exact.
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to. (a) If p is a prime ideal , and S = A - p is the complement of p in the ring A, then
s-tM is denoted by M p - Show that the natural map

M~ TI u,
of a module M into the direct product of all localizations Mp where p ranges over
all maximal ideals, is injective .

(b) Show that a sequence 0~ M' ~ M~ M"~ 0 is exact if and only if the sequence
o~ M~ ~ Mp~ M"p~ 0 is exact for all primes p .

(c) Let A be an entire ring and let M be a torsion-free module . For each prime p of
A show that the natural map M~ Mp is injective. In particular A~ Ap is injective,
but you can see that directly from the imbedding of A in its quotient field K .

Projective modules over Dedekind rings

For the next exercise we assume you have done the exercises on Dedekind rings in
the preceding chapter. We shall see that for such rings , some parts of their module theory
can be reduced to the case of principal rings by localization . We let 0 be a Dedekind ring
and K its quotient field.

I I . Let M be a finitely generated torsion-free module over o. Prove that M is projective.
[Hint : Given a prime ideal p, the localized module Mp is finitely generated torsion
free over op, which is principal. Then Mp is projective, so if F is finite free over 0,

and f : F ~ M is a surjective homomorphism, then fp : Fp~ Mp has a splitting
gp: Mp~ Fp, such thatfp 0 gp = idMp' There exists cp Eo such that cp rf. p and
cpgp(M) C F. The family {cp} generates the unit ideal 0 (why?), so there is a finite
number of elements cPi and elements Xj Eo such that LXjcPi = I. Let

9 = L XjCP,gp,·

Then show that g : M ~ F gives a homomorphism such that fo 9 = idM . ]

12. (a) Let a ,b be ideals . Show that there is an isomorphism of o-rnodules

a$b~ o$ab

[Hint: First do this when a, b are relatively prime . Consider the homomorphism
a $ b ~ a + b , and use Exercise to. Reduce the general case to the relatively
prime case by using Exercise 19 of Chapter II .]

(b) Let a, b be fractional ideals , and letf: a~ b be an isomorphism (of o-rnodules ,
of course) . Thenfhas an extension to a K-linear maPA : K ~ K . Let c = A(l) .
Show that b = ca and that f is given by the mapping me: x ~ cx (multiplication
by c).

(c) Let a be a fractional ideal. For each b E a-I the map mb: a ~ 0 is an element
of the dual a v. Show that 0 -] = a v = Homo( a, 0) under this map, and so
oVv = u ,

13. (a) Let M be a projective finite module over the Dedekind ring o. Show that there
exist free modules F and F' such that F :> M :> F', and F, F ' have the same
rank, which is called the rank of M .

(b) Prove that there exists a basis {et , . . . , en} of F and ideals OJ , ••• , an such that
M = ate, + .. . + 0nen' or in other words, M = $ OJ'
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(c) Prove that M = 0 n -) Ell a for some ideal a, and that the association M 1--+ a
induces an isomorphism of Ko(o) with the group of ideal classes Pic(o) . (The
group Ko(o) is the group of equivalence classes of projective modules defined at
the end of §4.)

A few snakes

14. Consider a commutative diagram of R-modules and homomorphisms such that each
row is exact :

M ' -----+ M -----+ M" -----+ 0

Ij oj 1-]

o-----+ N' -----+ N -----+ N"

Prove:
(a) Iff, hare monomorphisms then g is a monomorphism.
(b) Iff, h are surjective, then g is surjective.
(c) Assume in addition that 0 -+ M' -+ M is exact and that N -+ N" -+ 0 is exact.

Prove that if any two off, g, h are isomorphisms, then so is the third . [Hint:
Use the snake lemma .]

15. Thefive lemma. Consider a commutative diagram of R-modules and homomorph
isms such that each row is exact :

M 1 -----+ M 2 -----+ M 3 -----+ M 4 -----+ M 5

1 1 ~ ~ ~
N I -----+ N 2 -----+ N 3 -----+ N 4 -----+ N 5

Prove :
(a) 1f!1 is surjective and!2,/4 are rnonomorphisms, then j, is a monomorphism.
(b) If!5 is a monomorphism and!2,/4 are surjective, then j, is surjective . [Hint :

Use the snake lemma.]

Inverse limits

16. Prove that the inverse limit of a system of simple groups in which the homomorphisms
are surjective is either the trivial group , or a simple group .

17. (a) Let n range over the positive integers and let p be a prime number. Show that
the abelian groups An = Z/pnz form an inverse system under the canonical ho
momorphism if n ~ m. Let Zp be its inverse limit. Show that Zp maps surjec
tively on each Z/pnZ; that Zp has no divisors of 0, and has a unique maximal
ideal generated by p. Show that Zp is factorial , with only one prime, namely p
itself.
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(b) Next consider all non zero ideals of Z as forming a directed system, by divisibil
ity. Prove that

~ Z/(a) = fl z.;
(0) p

where the limit is taken over all non zero ideals (a) , and the product is taken
over all primes p .

18. (a) Let {An} be an inversely directed sequence of commutative rings, and let {Mn}
be an inversely directed sequence of modules , Mn being a module over An such
that the following diagram is commutative :

The vertical maps are the homomorphisms of the directed sequence, and the
horizontal maps give the operation of the ring on the module. Show that~ M n

is a module over~ An .
(b) Let M be a p-divisible group. Show that Tp(A) is a module over Zp.

(c) Let M, N be p-divisible groups . Show that TpCM $ N) = Tp(M) $ Tp(N), as
modules over Zp.

Direct limits

19. Let (A j,f~) be a directed family of modules. Let ak E Ak for some k, and suppose that
the image of ak in the direct limit A is O. Show that there exists some indexj ;;:; k such
that f'(ak) = O. In other words. whether some element in some group Ai vanishes
in the direct limit can already be seen within the original data. One way to see this
is to use the construction of Theorem 10.1 .

20. Let I. J be two directed sets. and give the product I x J the obvious ordering that
(i ,j) ~ (i'.j') if i ~ i' and j ~ j'. Let Aij be a family of abelian groups. with homo
morphisms indexed by I x J, and forming a directed family. Show that the direct
limits

lim limA j j and lim limA j j
i j j

exist and are isomorphic in a natural way. State and prove the same result for inverse
limits.

21. Let (Mi,f~), (M;, g~) be directed systems of modules over a ring. Bya homomorphism

one means a family of homomorphisms U j : Mi -+ M, for each i which commute with
thef~, g~ . Suppose we are given an exact sequence

of directed systems, meaning that for each i, the sequence
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is exact. Show that the direct limit preserves exactness, that is

0-+ lim M', -+ lim M, -+ lim M " -+ 0

is exact.
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22. (a) Let {Mil be a family of modules over a ring. For any module N show that

Hom(EJj u, N) = Il Hom(M;, N)

(b) Show that

Hom(N, Il M;) = nHom(N, MJ

23. Let {MJ be a directed family of modules over a ring. For any module N show that

lim Hom( N , M i ) = Hom(N, lim M;)

24. Show that any module is a direct limit of finitely generated submodules.

A module M is called finitely presented if there is an exact sequence

where F0' Fl are free with finite bases. The image of F 1 in F0 is said to be the submodule
of relations , among the free basis elements of Fo-

25. Show that any module is a direct limit of finitely presented modules (not necessarily
submodules). In other words, given M, there exists a directed system {M i , fJ} with M;
finitely presented for all i such that

[Hint : Any finitely generated submodule is such a direct limit, since an infinitely
generated module of relations can be viewed as a limit of finitely generated modules of
relations. Make this precise to get a proof.]

26. Let E be a module over a ring. Let {MJ be a directed family of modules. If E is finitely
generated, show that the natural homomorphism

lim Hom(E, M;) -+ Hom(E, lim M;)

is inject ive. If E is finitely presented, show that this homomorphism is an isomorphism.
Hint : First prove the statements when E is free with finite basis. Then, say E is
finitely presented by an exact sequence F 1 -+ F 0 -+ E -+ O. Consider the diagram :

o~ lim Hom(E, M;)~ lim Hom(F0 , M;)~ lim Hom(F l ' M;)

I I I
o~ Hom(E, lim M i )~ Hom(F 0 , lim M i )~ Hom(F t- lim M i)
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Let A be an algebra over a field k. By a filtration of A we mean a sequence of k
vector spaces A; (i = 0, I, .. .) such that

Ao cAl c A2 c ... and UA; = A ,

and A;Aj c Ai+j for all i, j ~ O. We then call A a filtered algebra. Let R be an
algebra. We say that R is graded if R is a direct sum R = EB R; of subspaces such that
R;Rj c Ri+j for all i, j ~ o.

27. Let A be a filtered algebra. Define R; for i ~ 0 by R; = AdA;_I. By definition,
A_I = {OJ . Let R = EBR;, and R; = gr;(A). Define a natural product on R making
R into a graded algebra, denoted by gr(A), and called the associated graded algebra.

28. Let A, B be filtered algebras, A = UA; and B = UB;. Let L: A -> B be a k-linear
map preserving the filtration, that is L(A;) c B; for all i, and L(ca) = L(c)L(a) for
c E k and a E A; for all i.

(a) Show that L induces a k-linear map

gr;(L): gr;(A) -> gr;(B) for all i.

(b) Suppose that gr;(L) is an isomorphism for all i. Show that L is a k-linear
isomorphism.

29. Suppose k has characteristic O. Let n be the set of all strictly upper triangular ma
trices of a given size n x n over k.

(a) For a given matrix X E n, let D, (X), . .. ,Dn(X) be its diagonals, so Dl =
D, (X) is the main diagonal, and is 0 by the definition of n. Let n; be the
subset of n consisting of those matrices whose diagonals D, , . . . ,Dn- ; are O.
Thus no = {OJ, nl consists of all matrices whose components are 0 except
possibly for Xnn; n2 consists of all matrices whose components are 0 except
possibly those in the last two diagonals; and so forth. Show that each n, is
an algebra, and its elements are nilpotent (in fact the (i + I )-th power of its
elements is 0).

(b) Let U be the set of elements I + X with X E n. Show that U is a multi
plicative group.

(c) Let exp be the exponential series defined as usual. Show that exp defines a
polynomial function on n (all but a finite number of terms are 0 when eval
uated on a nilpotent matrix), and establishes a bijection

exp: n -> U.

Show that the inverse is given by the standard log series.



CHAPTER IV
Polynomials

This chapter provides a continuation of Chapter II, §3. We prove stan
dard properties of polynomials. Most readers will be acquainted with some
of these properties, especially at the beginning for polynomials in one vari
able. However, one of our purposes is to show that some of these properties
also hold over a commutative ring when properly formulated. The Gauss
lemma and the reduction criterion for irreducibility will show the importance
of working over rings. Chapter IX will give examples of the importance of
working over the integers Z themselves to get universal relations. It happens
that certain statements of algebra are universally true. To prove them, one
proves them first for elements of a polynomial ring over Z, and then one
obtains the statement in arbitrary fields (or commutative rings as the case
may be) by specialization. The Cayley-Hamilton theorem of Chapter XV,
for instance, can be proved in that way.

The last section on power series shows that the basic properties of
polynomial rings can be formulated so as to hold for power series rings. I
conclude this section with several examples showing the importance of power
series in various parts of mathematics.

§1. BASIC PROPERTIES FOR POLYNOMIALS
IN ONE VARIABLE

We start with the Euclidean algorithm.

Theorem 1.1. Let A be a commutative ring, let f, g E A[X] be poly
nomials in one variable, of degrees ~ 0, and assume that the leading
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coefficient of 9 is a unit in A. Then there exist unique polynomials
q, r E A [X] such that

f = gq + r
and deg r < deg g.

Proof Write

f(X) = anXn+ + ao,

g(X) = bdxd+ + bo,

where n = deg J, d = deg 9 so that an, bd =J 0 and bd is a unit in A. We use
induction on n.

If n = 0, and deg 9 > deg J, we let q = 0, r = [. If deg 9 = deg f = 0, then
we let r = 0 and q = anbi 1

•

Assume the theorem proved for polynomials of degree < n (with n > 0).
We may assume deg 9 ;:£ deg f (otherwise, take q = 0 and r =f). Then

where f1(X) has degree < n. By induction, we can find ql' r such that

and deg r < deg g. Then we let

to conclude the proof of existence for q, r.
As for uniqueness, suppose that

with deg r1 < deg 9 and deg rz < deg g. Subtracting yields

Since the leading coefficient of 9 is assumed to be a unit, we have

deg(ql - qz)g = deg(q1 - qz) + deg g.

Since deg(rz - rd < deg g, this relation can hold only if q1 - qz = 0, i.e.
q1 = qz, and hence finally r1 = rz as was to be shown.

Theorem 1.2. Let k be a field. Then the polynomial ring in one variable
k[X] is principal.
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Proof. Let a be an ideal of k[X] , and assume a =I- O. Let 9 be an
element of a of smallest degree ~ O. Let f be any element of a such that
f =I- O. By the Euclidean algorithm we can find q, r E k[X] such that

f = qg + r

and deg r < deg g. But r = f - qg, whence r is in a. Since g had minimal
degree ~ 0 it follows that r = 0, hence that a consists of all polynomials qg
(with q E k[X]). This proves our theorem. By Theorem 5.2 of Chapter II we
get :

Corollary 1.3. The ring k[X] is factorial.

If k is a field then every non-zero element of k is a unit in k, and one sees
immediately that the units of k[X] are simply the units of k. (No polyno
mial of degree ~ 1 can be a unit because of the addition formula for the
degree of a product.)

A polynomial f (X ) E k[X] is called irreducible if it has degree ~ 1, and if
one cannot write f(X) as a product

f(X) = g(X)h(X)

with g, h E k[X], and both g, h rt:. k. Elements of k are usually called constant
polynomials, so we can also say that in such a factorization, one of g or h must
be constant. A polynomial is called monic if it has leading coefficient 1.

Let A be a commutative ring and f(X) a polynomial in A[X]. Let A be
a subring of B. An element b E B is called a root or a zero of f in B if
f(b) = O. Similarly, if (X) is an n-tuple of variables, an n-tuple (b) is called a
zero of f if f(b) = O.

Theorem 1.4. Let k be a field and f a polynomial in one variable X in
k[X], of degree n ~ O. Then f has at most n roots in k, and if a is a root
of f in k, then X - a divides f(X).

Proof. Suppose f(a) = O. Find q, r such that

f(X) = q(X)(X - a) + r(X)

and deg r < 1. Then

o= f(a) = r(a).

Since r = 0 or r is a non-zero constant, we must have r = 0, whence X - a
divides f(X) . If a1 , • •• , am are distinct roots of f in k, then inductively we see
that the product
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divides f(X), whence m ~ n, thereby proving the theorem. The next corollaries
give applications of Theorem 1.4 to polynomial functions.

Corollary 1.5. Let k be a field and T an infinite subset of k. Let
f(X) E k[X] be a polynomial in one variable. If f(a) = 0 for all a E T, then
f = 0, i.e. f induces the zero function.

Corollary 1.6. Let k be a field, and let Sl' ... , S; be infinite subsets of k.
Let f(X 1, .. . , Xn ) be a polynomial in n variables over k. If f(a 1 , ... , an) = 0
for all a, E S, (i = 1, ... , n), then f = o.
Proof By induction. We have just seen the result is true for one

variable. Let n ~ 2, and write

f(X1, ... , Xn) = Lh(Xt, ... ,xn-dxj
j

as a polynomial in K; with coefficients in k[X1 , .. . , Xn- t ]. Ifthere exists

such that for some j we have h(bl , • • • ,bn- I ) # 0, then

is a non-zero polynomial in k[Xn] which takes on the value 0 for the infinite
set of elements Sn' This is impossible. Hence Jj induces the zero function on
S, x . .. X Sn-l for all j, and by induction we have Jj = 0 for all j . Hence
f = 0, as was to be shown.

Corollary 1.7. Let k be an infinite field and f a polynomial in n variables
over k. Iff induces the zero function on kIn), then f = o.
We shall now consider the case of finite fields. Let k be a finite field with

q elements. Let f(X1, .. . , Xn) be a polynomial in n variables over k. Write

If a(y) # 0, we recall that the monomial M(v)(X) occurs in f Suppose this is
the case, and that in this monomial M(v)(X), some variable Xi occurs with an
exponent Vi ~ q. We can write

jJ. = integer ~ O.

If we now replace XiV, by Xr+ 1 in this monomial, then we obtain a new
polynomial which gives rise to the same function as f The degree of this
new polynomial is at most equal to the degree of f
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Performing the above operation a finite number of times, for all the
monomials occurring in f and all the variables Xl' ... , X; we obtain some
polynomial f* giving rise to the same function as J, but whose degree in
each variable is < q.

Corollary 1.8. Let k be a finite field with q elements. Let f be a
polynomial in n variables over k such that the degree of f in each variable
is < q. Iff induces the zero function on kIn), then f = o.

Proof. By induction. If n = 1, then the degree of f is < q, and hence f
cannot have q roots unless it is O. The inductive step is carried out just as
we did for the proof of Corollary 1.6 above.

Let rbe a polynomial in n variables over the finite field k. A polynomial
g whose degree in each variable is < q will be said to be reduced. We have
shown above that there exists a reduced polynomial f* which gives the same
function as f on kIn). Theorem 1.8 now shows that this reduced polynomial is
unique. Indeed, if gl' g2 are reduced polynomials giving the same function,
then gl - gz is reduced and gives the zero function . Hence gl - gz = 0 and
gl = gz·

We shall give one more application of Theorem 1.4. Let k be a field. By
a multiplicative subgroup of k we shall mean a subgroup of the group k*
(non-zero elements of k).

Theorem 1.9. Let k be a field and let U be a finite multiplicative sub
group of k. Then U is cyclic.

Proof. Write U as a product of subgroups U(p) for each prime p, where
U(p) is a p-group. By Proposition 4.3(v) of Chapter I, it will suffice to prove
that U(p) is cyclic for each p. Let a be an element of U(p) of maximal period
pr for some integer r. Then xpr = 1 for every element x E U(p), and hence all
elements of U(p) are roots of the polynomial

Xpr - 1.

The cyclic group generated by a has p" elements. If this cyclic group is not
equal to U(p), then our polynomial has more than pr roots, which is
impossible. Hence a generates U(p), and our theorem is proved.

Corollary 1.10. If k is a finite field, then k* is cyclic.

An element ( in a field k such that there exists an integer n ~ 1 such that
(n = 1 is called a root of unity, or more precisely an n-th root of unity. Thus
the set of n-th roots of unity is the set of roots of the polynomial X" - 1.
There are at most n such roots, and they obviously form a group, which is
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cyclic by Theorem 1.9. We shall study roots of unity in greater detail
later. A generator for the group of n-th roots of unity is called a primitive
n-th root of unity. For example, in the complex numbers, e2ni

/n is a primi
tive n-th root of unity, and the n-th roots of unity are of type e2ni

. /n with
1 ~ v s n.

The group of roots of unity is denoted by u, The group of roots of unity
in a field K is denoted by Jl(K).

A field k is said to be algebraically closed if every polynomial in k[X] of
degree ;;; 1 has a root in k. In books on analysis, it is proved that the
complex numbers are algebraically closed. In Chapter V we shall prove that
a field k is always contained in some algebraically closed field. If k is
algebraically closed then the irreducible polynomials in k[X] are the poly
nomials of degree 1. In such a case, the unique factorization of a polynomial
f of degree ;;; 0 can be written in the form

r

f(X) = c TI (X - lXi)m i

i=1

with c e k, c#O and distinct roots lX1, .. . ,lXr • We next develop a test when
m.:» 1.

Let A be a commutative ring. We define a map

D: A[X] --+ A [X]

of the polynomial ring into itself. If f(X) = a.X" + ...+ ao with a, E A, we
define the derivative

n

Df(X) = f'(X) = L va.X·-1 = nanX
n

-
1 + ...+ a1 •

.=1

One verifies easily that if f, g are polynomials in A[X], then

and if a E A, then

(f + g)' = I' + g', (fg), = f'g + fg ',

(af), = af'.

Let K be a field and f a non-zero polynomial in K[X]. Let a be a root
of fin K. We can write

f(X) = (X - a)mg(x)

with some polynomial g(X) relatively prime to X - a (and hence such that
g(a) # 0). We call m the multiplicity of a in J, and say that a is a multiple
root if m > 1.
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Proposition 1.11. Let K, J be as above. The element a oj K is a multiple
root ofJ if and only if it is a root and j'(a) = 0.

Proof. Factoring J as above, we get

j'(X) = (X - a)mg,(X) + m(X - a)m-lg(X).

If m > 1, then obviously j'(a) = 0. Conversely, if m = 1 then

j'(X) = (X - a)g'(X) + g(X),

whence j'(a) = g(a) =I: 0. Hence if j'(a) =°we must have m > 1, as desired.

Proposition 1.12. Let J E K[X]. IJ K has characteristic 0, and J has
degree ~ 1, then I' =I: 0. Let K have characteristic p > °and J have
degree ~ 1. Then j' = °if and only if, in the expression for J(X) given
by

n

J(X) = L a.X',
v=O

p divides each integer v such that a. =I: O.

Proof. If K has characteristic 0, then the derivative of a monomial a.X"
such that v ~ 1 and a. =I: ° is not zero since it is va.X·-1

• If K has
characteristic p > 0, then the derivative of such a monomial is °if and only if
plv, as contended.

Let K have characteristic p > 0, and let J be written as above, and be
such that j'(X) = 0. Then one can write

d

f(X) = L bp.XpP.
jl =O

with bp. E K.

Since the binomial coefficients (~) are divisible by p for 1 :;;; v :;;; p - 1 we

see that if K has characteristic p, then for a, b E K we have

Since obviously (ab)P = arb", the map

is a homomorphism of K into itself, which has trivial kernel, hence is
injective. Iterating, we conclude that for each integer r ~ 1, the map x H xP"
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is an endomorphism of K , called the Frobenius endomorphism. Inductively, if
C\ , • •• , Cn are elements of K , then

Applying these remarks to polynomials, we see that for any element a E K
we have

If C E K and the polynomial

has one root a in K, then apr = C and

xr - C = (X - a)P'.

Hence our polynomial has precisely one root, of multiplicity pro For in
stance, (X - 1)P' = xr - 1.

§2. POLYNOMIALS OVER A FACTORIAL RING

Let A be a factorial ring, and K its quotient field. Let a E K , a "# o. We
can write a as a quotient of elements in A, having no prime factor in
common. If p is a prime element of A, then we can write

a = p'b,

where b E K, r is an integer, and p does not divide the numerator or
denominator of b. Using the unique factorization in A, we see at once that r
is uniquely determined by a, and we call r the order of a at p (and write
r = ord, a). If a = 0, we define its order at p to be 00 .

If a, a' E K and aa' "# 0, then

This is obvious.
Let J(X) E K[X] be a polynomial in one variable , written

J (X) = ao + a\X + ... + anXn.

If J = 0, we define ord, J to be 00 . If J "# 0, we define ord, J to be
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ord, f = min ord, ai'

the minimum being taken over all those i such that a, #- 0.
If r = ord, f, we call up' a p-content for f, if u is any unit of A. We define

the content of f to be the product.

the product being taken over all p such that ord, f #-0, or any multiple of
this product by a unit of A. Thus the content is well defined up to
multiplication by a unit of A. We abbreviate content by cont.

If b E K, b #- 0, then cont(bf) = b cont(f). This is clear. Hence we can
write

where c = cont(f), and fl (X) has content 1. In particular, all coefficients of
fl lie in A, and their g.c.d. is 1. We define a polynomial with content 1 to be
a primitive polynomial.

Theorem 2.1. (Gauss Lemma). Let A be a factorial ring, and let K be
its quotient field. Let f, g E K[X] be polynomials in one variable. Then

cont(fg) = cont(f) cont(g).

Proof. Writing f = Cf I and g = dq, where c = cont(f) and d = cont(g),
we see that it suffices to prove : If f, g have content 1, then fg also has
content 1, and for this, it suffices to prove that for each prime p, ordp(fg) = 0.
Let

f(X) = anXn+ + ao,

g(X) = bmXm+ + bo,

be polynomials of content 1. Let p be a prime of A. It will suffice to prove
that p does not divide all coefficients of fg. Let r be the largest integer such
that °~ r ~ n, a, #- 0, and p does not divide a.. Similarly, let b, be the
coefficient of g farthest to the left, bs #- 0, such that p does not divide b.,
Consider the coefficient of xr+s in f(X)g(X). This coefficient is equal to

c = arbs + ar+1 bs-I + .
+ ar - I b

S
+1 + .

and p %arbs. However, p divides every other non-zero term in this sum since
in each term there will be some coefficient a, to the left of a, or some
coefficient bj to the left of b.. Hence p does not divide c, and our lemma is
proved.
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We shall now give another proof for the key step in the above argument,
namely the statement:

Iff, g E A [X] are primitive (i.e. have content 1) then fg is primitive.

Proof We have to prove that a given prime p does not divide all the
coefficients of fg. Consider reduction mod p, namely the canonical homo
morphism A ---t A/(p) = A. Denote the image of a polynomial by a bar, so
f f---+J and g f---+ g under the reduction homomorphism. Then

JiJ =]g.

By hypothesis, J=I0 and g =I O. Since it is entire, it follows that JiJ =I 0, as
was to be shown.

Corollary 2.2. Let f(X) E A [X] have a factorization f(X) = g(X)h(X) in
K[X]. If cg = cont(g), Ch = cont(h), and g = cgg t, h = chh t, then

f(X) = cgchgt (X)h t (X),

and CgCh is an element of A. In particular, if [, g E A [X] have content 1,
then h e A [X] also.

Proof The only thing to be proved is CgCh E A. But

cont(f) = CgCh cont(gtht) = CgCh'

whence our assertion follows.

Theorem 2.3. Let A be a factorial ring. Then the polynomial ring A [X]
in one variable is factorial. Its prime elements are the primes of A and poly
nomials in A[X] which are irreducible in K[X] and have content 1.

Proof Let fEA[X], f#O. Using the unique factorization in K[X]
and the preceding corollary, we can find a factorization

f(X) = c· Pt(X) .. . p,(X)

where C E A, and Pt, ... , p, are polynomials in A[X] which are irreducible in
K[X]. Extracting their contents, we may assume without loss of generality
that the content of Pi is I for each i, Then C = cont(f) by the Gauss lemma.
This gives us the existence of the factorization. It follows that each Pi(X) is
irreducible in A[X]. If we have another such factorization, say

f(X) = d 'qt(X) '" qs(X),

then from the unique factorization in K[X] we conclude that r = s, and after
a permutation of the factors we have
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with elements a, E K. Since both Pi' qi are assumed to have content 1, it
follows that a, in fact lies in A and is a unit. This proves our theorem.

Corollary 2.4. Let A be a factorial ring. Then the ring of polynomials in
n variables A[X1 , .. . , Xn] is factorial. Its units are precisely the units of
A, and its prime elements are either primes of A or polynomials which are
irreducible in K [X] and have content 1.

Proof Induction.

In view of Theorem 2.3, when we deal with polynomials over a factorial
ring and having content 1, it is not necessary to specify whether such
polynomials are irreducible over A or over the quotient field K. The two
notions are equivalent.

Remark 1. The polynomial ring K[X1 , .. . , Xn] over a field K is not
principal when n ~ 2. For instance, the ideal generated by Xl' ... , X; is not
principal (trivial proof).

Remark 2. It is usually not too easy to decide when a given polynomial
(say in one variable) is irreducible. For instance, the polynomial X 4 + 4 is
reducible over the rational numbers, because

X 4 + 4 = (X 2
- 2X + 2)(X 2 + 2X + 2).

Later in this book we shall give a precise criterion when a polynomial
X" - a is irreducible . Other criteria are given in the next section.

§3. CRITERIA FOR IRREDUCIBILITY

The first criterion is:

Theorem 3.1. (Eisenstein's Criterion). Let A be a factorial ring. Let K
be its quotient field. Let f(X) = anXn+ ... + ao be a polynomial of degree
n ~ 1 in A [X]. Let p be a prime of A, and assume:

an =1= 0 (mod p), ai == 0 (mod p)

ao =1= 0 (mod p2).

Then f(X) is irreducible in K[X].

for all i < n,
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1 ~ v ~ p - 1,

Proof Extracting a g.c.d. for the coefficients of f, we may assume
without loss of generality that the content of f is 1. If there exists a
factorization into factors of degree ~ 1 in K[X], then by the corollary of
Gauss' lemma there exists a factorization in A [X], say f(X) = g(X)h(X),

g(X) = bdXd + + bo,

h(X) = cmxm+ + co,

with d, m ~ 1 and bdcm =I- O. Since boco = ao is divisible by p but not p2, it
follows that one of bo, Co is not divisible by p, say bo o Then plco. Since
cmbd = an is not divisible by p, it follows that p does not divide Cm' Let c, be
the coefficient of h furthest to the right such that c, ¥= 0 (mod p). Then

Since p, bocr but p divides every other term in this sum, we conclude that
p ,a" a contradiction which proves our theorem.

Example. Let a be a non-zero square-free integer =I- ± 1. Then for any
integer n ~ 1, the polynomial X" - a is irreducible over Q. The polynomials
3Xs - 15 and 2X 10

- 21 are irreducible over Q.

There are some cases in which a polynomial does not satisfy Eisenstein's
criterion, but a simple transform of it does.

Example. Let p be a prime number. Then the polynomial

f(X) = X p-l + ... + 1

is irreducible over Q.

Proof It will suffice to prove that the polynomial f(X + 1) is irreducible
over Q. We note that the binomial coefficients

(~) = v!(:~ v)!'

are divisible by p (because the numerator is divisible by p and the denomina
tor is not, and the coefficient is an integer). We have

(X + l)P - 1 X p + pXp-l + ... + pX
f(X + 1) = (X + 1) _ 1 = X

from which one sees that f(X + I) satisfies Eisenstein's criterion.

Example. Let E be a field and t an element of some field containing E such
that t is transcendental over E. Let K be the quotient field of E[ r].
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For any integer n ~ 1 the polynomial X" - t is irreducible in K[X]. This
comes from the fact that the ring A = E[t] is factor ial and that t is a prime
in it.

Theorem 3.2. (Reduction Criterion). Let A, B be entire rings, and let

cp: A --+ B

be a homomorphism. Let K, L be the quotient fields of A and B respec
tively. Let f E A [X] be such that cpf*0 and deg cpf= deg [. If cpf is
irreducible in L[X], then f does not have a factorization f(X) = g(X)h(X)
with

g,hEA[X] and deg g, deg h ~ 1.

Proof. Suppose f has such a factorization. Then cpf= (cpg)(cph). Since
deg cpg ~ deg 9 and deg cph ~ deg h, our hypothesis implies that we must
have equality in these degree relations. Hence from the irreducibility in
L[X] we conclude that 9 or h is an element of A, as desired .

In the preceding criterion, suppose that A is a local ring, i.e. a ring having
a unique maximal ideal p, and that p is the kernel of cp. Then from the
irreducibility of cpf in L[X] we conclude the irreducibility of f in A[X].
Indeed, any element of A which does not lie in p must be a unit in A, so our
last conclusion in the proof can be strengthened to the statement that 9 or h
is a unit in A.

One can also apply the criterion when A is factorial, and in that case
deduce the irreducibility of f in K[X].

Example. Let p be a prime number. It will be shown later that
XP - X- I is irreducible over the field Z /pZ. Hence XP - X-I is irreduc
ible over Q. Similarly,

X 5
- 5X4

- 6X - 1

is irreducible over Q.

There is also a routine elementary school test whether a polynomial has a
root or not.

Proposition 3.3. (Integral Root Test). Let A be a factorial ring and K
its quotient field. Let

f(X) = a.X" + ... + ao E A [X].

Let a E K be a root of f, with rx = bid expressed with b, d E A and b, d
relatively prime. Then blao and dian . In particular, if the leading coefficient
an is I, then a root rx must lie in A and divides ao.
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We leave the proof to the reader, who should be used to this one from way
back. As an irreducibility test, the test is useful especially for a polynomial of
degree 2 or 3, when reducibility is equivalent with the existence of a root in
the given field.

§4. HILBERT'S THEOREM

This section proves a basic theorem of Hilbert concerning the ideals of a
polynomial ring. We define a commutative ring A to be Noetherian if every
ideal is finitely generated.

Theorem 4.1. Let A be a commutative Noetherian ring. Then the polyno
mial ring A[X] is also Noetherian.

Proof Let ~ be an ideal of A[X]. Let OJ consist of °and the set of ele
ments a E A appearing as leading coefficient in some polynomial

ao + a1X + ...+ aX j

lying in 21. Then it is clear that OJ is an ideal. (If a, b are in 0 ;, then a ± b is
in OJ as one sees by taking the sum and difference of the corresponding
polynomials. If x E A, then xa E OJ as one sees by multiplying the corre
sponding polynomial by x.) Furthermore we have

in other words, our sequence of ideals {c.} is increasing. Indeed, to see this
multiply the above polynomial by X to see that a E 0i+l'

By criterion (2) of Chapter X, §1, the sequence of ideals {c.} stops, say at

00 C 01 C 02 C . , . C Or = 0r+l = ... .
Let

aOl' • •• , a Ono be generators for 00'

ar 1 , ••• , arn, be generators for or'

For each i = 0, ... , rand j = 1, .. . , n, let hj be a polynomial in 21, of degree
i, with leading coefficient aij ' We contend that the polynomials hj are a set
of generators for 21.

Let f be a polynomial of degree d in 21. We shall prove that f is in the
ideal generated by the hj' by induction on d. Say d ~ 0. If d > r, then we
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note that the leading coefficients of

X d- 'j, Xd -'j,rl' ... , rnr

PARTIAL FRACTIONS 187

generate ad' Hence there exist elements cl' . .. , Cnr E A such that the
polynomial

f - C Xd-'j, - ' " - C Xd-'j,
1 rl "r rnr

has degree < d, and this polynomial also lies in 21. If d ~ r, we can subtract
a linear combination

to get a polynomial of degree < d, also lying in 21. We note that the
polynomial we have subtracted from f lies in the ideal generated by the fij'
By induction, we can subtract a polynomial g in the ideal generated by the
fu such that f - g = 0, thereby proving our theorem.

We note that if tp: A ~ B is a surjective homomorphism of commutative
rings and A is Noetherian, so is B. Indeed, let b be an ideal of B, so q>-l(b)
is an ideal of A. Then there is a finite number of generators (a" . . . , an) for
q>-l(b), and it follows since q> is surjective that b = q>(q>-l(b)) is generated by
q>(a 1 ) , ••• , q>(an ) , as desired. As an application, we obtain:

Corollary 4.2. Let A be a Noetherian commutative ring, and let B =
A[x), . .. , xm ] be a commutative ring finitely generated over A . Then B is
Noetherian .

Proof. Use Theorem 4.1 and the preceding remark, representing B as a
factor ring of a polynomial ring.

Ideals in polynomial rings will be studied more deeply in Chapter IX.
The theory of Noetherian rings and modules will be developed in Chapter X.

§5. PARTIAL FRACTIONS

In this section, we analyze the quotient field of a principal ring, using the
factoriality of the ring .

Theorem 5.1. Let A be a principal entire ring, and let P be a set of
representatives for its irreducible elements. Let K be the quotient field of
A, and let CI. E K . For each pEP there exists an element Cl.p E A and an
integer j(p) ~ 0, such that j(p) = °for almost all PEP, Cl.p and pj(p) are
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relatively prime, and

IV, §5

If we have another such expression

IX = L p~rp),
peP

then j(p) = i(p) for all p, and IXp == (3p mod pj(P) for all p.

Proof. We first prove existence, in a special case. Let a, b be rela
tively prime non-zero elements of A. Then there exists x, yEA such that
xa + yb = 1. Hence

1 x Y
-= -+
ab b a'

Hence any fraction clab with c E A can be decomposed into a sum of two
fractions (namely cxfb and cy/a) whose denominators divide b and a respec
tively. By induction, it now follows that any IX E K has an expression as
stated in the theorem, except possibly for the fact that p may divide IXp '

Canceling the greatest common divisor yields an expression satisfying all the
desired conditions.

As for uniqueness, suppose that IX has two expressions as stated in the
theorem . Let q be a fixed prime in P. Then

IXq {3q ,,(3p IXp
qj(q) - qi(q) = /;:q pi(P) - pj(P)'

If j(q) = i(q) = 0, our conditions concerning q are satisfied. Suppose one of
j(q) or i(q) > 0, say j(q), and say j(q) ~ i(q). Let d be a least common multiple
for all powers pj(P) and pi(p) such that p 1= q. Multiply the above equation by
dqj(q). We get

for some (3 E A. Furthermore, q does not divide d. If i(q) < j(q) then q
divides IXq , which is impossible. Hence i(q) = j(q). We now see that qj(q)
divides IXq - (3q, thereby proving the theorem.

We apply Theorem 5.1 to the polynomial ring k[X] over a field k. We
let P be the set of irreducible polynomials, normalized so as to have leading
coefficient equal to 1. Then P is a set of representatives for all the irreduc
ible elements of k[X]. In the expression given for IX in Theorem 5.1, we can
now divide IXp by pj(P), i.e. use the Euclidean algorithm, if deg IXp ~ deg pj(P).
We denote the quotient field of k[X] by k(X), and call its elements rational
functions.



IV, §5 PARTIAL FRACTIONS 189

Theorem 5.2. Let A = k[X] be the polynomial ring in one variable over a
field k. Let P be the set of irreducible polynomials in k[X] with leading
coefficient 1. Then any element f of k(X) has a unique expression

/P(X)
f(X) = L (XV(p) + g(X),

p e P P J

where /p, 9 are polynomials, /p = 0 if j(p) = 0, /p is relatively prime to p if
j(p) > 0, and deg /p < deg pj(p) if j(p) > O.

Proof The existence follows at once from our previous remarks. The
uniqueness follows from the fact that if we have two expressions, with
elements /p and CfJp respectively, and polynomials g, h, then pj(p) divides
/p - CfJp' whence /p - CfJp = 0, and therefore /p = CfJp, 9 = h.

One can further decompose the term /P/pj(p) by expanding /p according to
powers of p. One can in fact do something more general.

Theorem 5.3. Let k be a field and k[X] the polynomial ring in one
variable. Let J, 9 E k[X], and assume deg 9 f; 1. Then there exist unique
polynomials

such that deg /; < deg 9 and such that

Proof We first prove existence. If deg 9 > deg f, then we take fo = f
and /; = 0 for i > O. Suppose deg 9 ~ deg f We can find polynomials q, r
with deg r < deg 9 such that

f = qg + r,

and since deg 9 f; 1 we have deg q < deg f Inductively, there exist polyno
mials ho, hl , . .. , hs such that

q = ho + hlg + ... + hsgS
,

and hence

f = r + hog + ... + hsg
S
+1 ,

thereby proving existence.
As for uniqueness, let

be two expressions satisfying the conditions of the theorem. Adding terms
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equal to 0 to either side, we may assume that m = d. Subtracting, we get

Hence g divides 10 - <Po, and since deg(Jo - <Po) < deg g we see that 10 = <Po ·
Inductively, take the smallest integer i such that Ii # <Pi (if such i exists).
Dividing the above expression by o' we find that g divides Ii - <Pi and hence
that such i cannot exist. This proves uniqueness.

We shall call the expression for 1 in terms of g in Theorem 5.3 the g-adic
expansion of f If g(X) = X, then the g-adic expansion is the usual expres
sion of 1 as a polynomial.

Remark. In some sense, Theorem 5.2 redoes what was done in Theorem
8.1 of Chapter I for Q/Z; that is, express explicitly an element of K /A as a
direct sum of its p-components.

§6. SYMMETRIC POLYNOMIALS

Let A be a commutative ring and let t l, ... , tn be algebraically indepen
dent elements over A. Let X be a variable over A[t l , .. . , tnJ. We form the
polynomial

F(X) = (X - td ... (X - tn )

= x n - Slxn-l + ... + (-ltsn'

where each s, = Si(tl ' . . . , tn) is a polynomial in t l, . . . , tn' Then for instance

and

The polynomials S l , ... , s; are called the elementary symmetric polynomials
oft1, · .. , tn •

We leave it as an easy exercise to verify that s, is homogeneous of degree i
in r. , .. · , tn •

Let (J be a permutation of the integers (1, . . . , n). Given a polynomial
l(t) E A[t] = A[tt, . .. , tn], we define alto be

If a, T are two permutations, then aTI = a(Tf) and hence the symmetric group
G on n letters operates on the polynomial ring A[t] . A polynomial is called
symmetric if af = I for all a E G. It is clear that the set of symmetric
polynomials is a sub ring of A[t], which contains the constant polynomials
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(i.e. A itself) and also contains the elementary symmetric polynomials sl' .. . , sn'
We shall see below that A [Sl' ... , snJ is the ring of symmetric polynomials.

Let Xl' ... , X; be variables. We define the weight ofa monomial

to be Vl + 2v2 + ... + nvn • We define the weight of a polynomial
g(X1, ... , Xn) to be the maximum of the weights of the monomials occurring
in g.

Theorem 6.1. Let f(t) E A[t l, , tnJ be symmetric of degree d. Then
there exists a polynomial g(X i - , Xn) of weight ~ d such that

f(t) = g(Sl' . .. , sn)'

If f is homogeneous of degree d, then every monomial occurring in g has
weight d.

Proof. By induction on n. The theorem is obvious if n = 1, because
Sl = tl. Assume the theorem proved for polynomials in n - 1 variables.

If we substitute t; = 0 in the expression for F(X), we find

where (Sj)o is the expression obtained by substituting tn = 0 in Sj' We see
that (Sl)O"'" (sn-do are precisely the elementary symmetric polynomials in
t l , . .. , tn- l ·

We now carry out induction on d. If d = 0, our assertion is trivial.
Assume d > 0, and assume our assertion proved for polynomials of degree
< d. Let f(t l' .. . , tn ) have degree d. There exists a polynomial
gl (Xl' ... , Xn-d of weight ~ d such that

f(t l, .. . , tn-l, 0) = gl«(Sl)O, .. . , (sn-do).

We note that gl(Sl , .. . , sn-d has degree ~ d in t l, ... , tn' The polynomial

has degree ~ d (in t l ' ... , tn ) and is symmetric. We have

Hence fl is divisible by tn' i.e. contains t, as a factor. Since fl is symmetric,
it contains t 1 •• • tn as a factor. Hence

fl = Sn/2(tl, ... , tn)

for some polynomial f2' which must be symmetric, and whose degree is
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~ d - n < d. By induction, there exists a polynomial gz in n variables and
weight ~ d - n such that

We obtain

and each term on the right has weight ~ d. This proves our theorem, except for
the last statement which will be left to the reader.

We shall now prove that the elementary symmetric polynomials s l ' .. . , Sn

are algebraically independent over A.

If they are not, take a polynomial f(X l' ... , X n) E A [X] of least degree
and not equal to 0 such that

Write f as a polynomial in X; with coefficients in A[Xl , · · · , Xn - l ] ,

Then fo =1= O. Otherwise, we can write

f(X) = Xn",(X)

with some polynomial "', and hence Sn"'(Sl' ... , sn) = O. From this it follows
that "'(Sl, .. . , sn) = 0, and'" has degree smaller than the degree of f .

We substitute Si for Xi in the above relation, and get

o= fO(Sl' ... , sn-d + ... + fisp .. . , sn-ds~ .

This is a relation in A [t l' . . • , tn] , and we substitute 0 for t; in this relation .
Then all terms become 0 except the first one, which gives

using the same notation as in the proof of Theorem 6.1. This is a non-trivial
relation between the elementary symmetric polynomials in t l , ... , tn- l , a
contradiction.

Example. (The Discriminant). Let f(X) = (X - td ... (X - tn). Con
sider the product

For any permutation (J of (1, ... , n) we see at once that

ocr(t) = ±o(t).
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Hence c5(t)2 is symmetric, and we call it the discriminant:

D, = D(SI' ... , sn) = n(t i - t)2.
i<j

We thus view the discriminant as a polynomial in the elementary symmetric
functions. For a continuation of the general theory, see §8. We shall now
consider special cases.

Quadratic case. You should verify that for a quadratic polynomial
f(X) = X 2 + bX + c, one has

D = b2
- 4c.

Cubic case. Consider f(X) = X 3 + aX + b. We wish to prove that

D = -4a3 - 27b2•

Observe first that D is homogeneous of degree 6 in t 1 , t 2 • Furthermore, a is
homogeneous of degree 2 and b is homogeneous of degree 3. By Theorem
6.1 we know that there exists some polynomial g(X2 , X 3 ) of weight 6 such
that D = g(a, b). The only monomials XTX~ of weight 6, i.e. such that
2m + 3n = 6 with integers m, n ~ 0, are those for which m = 3, n = 0, or
m = °and n = 2. Hence

where v, ware integers which must now be determined.
Observe that the integers v, ware universal, in the sense that for any

special polynomial with special values of a, b its discriminant will be given
by g(a, b) = va3 + wb".

Consider the polynomial

fl(X) = X(X - I)(X + 1) = X 3
- X.

Then a = -1, b = 0, and D = va3 = -v. But also D = 4 by using the
definition of the discriminant of the product of the differences of the roots,
squared. Hence we get v = -4. Next consider the polynomial

Then a = 0, b = -1, and D = wb2 = W. But the three roots of fi are the
cube roots of unity, namely

-1+)=3 -1-)=3
1, 2 ' 2 .

Using the definition of the discriminant we find the value D = - 27. Hence
we get w = - 27. This concludes the proof of the formula for the dis
criminant of the cubic when there is no X 2 term.
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In general, consider a cubic polynomial

IV, §7

We find the value of the discriminant by reducing this case to the simpler
case when there is no X 2 term. We make a translation, and let

Then f(X) becomes

f(X) = f*(Y) = y 3 + aY + b = (Y - ud(Y - U2)(Y - u 3),

where a = U1U 2 + U2U 3 + U1U 3 and b = -U1U 2U3, while U 1 + U2 + U3 = 0.
We have

for i = 1, 2, 3,

and u, ~ uj = t, - tj for all i # j, so the discriminant is unchanged, and you
can easily get the formula in general. Do Exercise 12(b).

§7. MASON-STOTHERS THEOREM AND THE
abc CONJECTURE

In the early 80s a new trend of thought about polynomials started with the
discovery of an entirely new relation . Let J(t) be a polynomial in one variable
over the complex numbers if you wish (an algebraically closed field of charac
teristic °would do). We define

no(f) = number of distinct roots of f .
Thus no(f) counts the zeros of f by giving each of them multiplicity 1, and
no(f) can be small even though deg f is large.

Theorem 7.1 (Mason-Stothers, [Mas 841, [Sto 81)). Let aCt), bet) , e(t) be
relatively prime polynomials sueh that a + b = e. Then

maxdeg{a,b ,e} ~ no(abe)-1.

Proof (Mason) Dividing bye, and letting f = al e, g = ble we have

f + g = 1,

where f, g are rational functions. Differentiating we get f' + g' = 0, which
we rewrite as
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so that
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b g !'I!.r r: -g'lg '

Let

a(t) = c 1 TI (t - a;)mi ,

Then by calculus algebraicized in Exercise 11(c), we get

b !'I!

a e'le

A common denominator for !'I! and g'lg is given by the product

No = TI (t - a;) TI (t - P) TI (t - Yk),

whose degree is no(abc). Observe that No!'l! and Nog'lg are both polyno
mials of degrees at most no(abc) - 1. From the relation

b No!'l!
a- - Nog'lg'

and the fact that a, b are assumed relatively prime, we deduce the inequality
in the theorem,

As an application, let us prove Fermat's theorem for polynomials. Thus
let x(t), y(t), z(t) be relatively prime polynomials such that one of them has
degree f; 1, and such that

x(t)" + y(t)" = z(t)".

We want to prove that n ;;::; 2. By the Mason-Stothers theorem, we get

n deg x = deg x(t)" ;;::; deg x(t) + deg y(t) + deg z(t) - 1,

and similarly replacing x by y and z on the left-hand side. Adding, we find

n(deg x + deg y + deg z) ;;::; 3(deg x + deg y + deg z) - 3.

This yields a contradiction if n f; 3.
As another application in the same vein, one has :

Davenport's theorem. Let!, g be non-constant polynomials such that
!3 _ g2 =F O. Then

See Exercise 13.
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One of the most fruitful analogies in mathematics is that between the
integers Z and the ring of polynomials F[tJ over a field F. Evolving from
the insights of Mason [Ma 84J, Frey [Fr 87J, Szpiro, and others , Masser and
Oesterle formulated the abe conjecture for integers as follows. Let m be a
non-zero integer. Define the radical of m to be

No(m) = TI p,
plm

i.e. the product of all the primes dividing m, taken with multiplicity 1.

The abc conjecture. Given s > 0, there exists a positive number C(e) having
the following property. For any non-zero relative prime integers a, b, e
sueh that a + b = e, we have

maxt]c], Ibl, leI) ~ C(e)No(abe)l +<.

Observe that the inequality says that many prime factors of a, b, e occur to
the first power, and that if "small" primes occur to high powers, then they
have to be compensated by "large" primes occurring to the first power. For
instance, one might consider the equation

2n ± 1 = m.

For m large, the abe conjecture would state that m has to be divisible by
large primes to the first power. This phenomenon can be seen in the tables
of [BLSTW 83].

Stewart - Tijdeman [ST 86] have shown that it is necessary to have the E in
the formulation of the conjecture. Subsequent examples were communicated to
me by Wojtek Jastrzebowski and Dan Spielman as follows.

We have to give examples such that for all C > 0 there exist natural
numbers a, b, e relatively prime such that a + b = e and lal > CNo(abe). But
trivially,

We consider the relations an + b; = en given by

32
" - 1 = en'

It is clear that these relations provide the desired examples. Other examples
can be constructed similarly, since the role of 3 and 2 can be played by other
integers. Replace 2 by some prime, and 3 by an integer == 1 mod p.

The abe conjecture implies what we shall call the

Asymptotic Fermat Theorem. For all n sufficiently large, the equation

has no solution in relatively prime integers =f:. O.
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The proof follows exactly the same pattern as for polynomials, except
that we write things down multiplicatively, and there is a 1 + s floating
around. The extent to which the abc conjecture will be proved with an
explicit constant C(e) (or say C(1) to fix ideas) yields the corresponding
explicit determination of the bound for n in the application. We now go into
other applications.

Hall's conjecture [Ha 71]. If u, v are relatively prime non-zero integers
such that u3

- v2 #- 0, then

lu3
- v2

1 »luI 1/2 - E
•

The symbol » means that the left-hand side is ~ the right-hand side times a
constant depending only on e. Again the proof is immediate from the abc
conjecture. Actually, the hypothesis that u, v are relatively prime is not
necessary; the general case can be reduced to the relatively prime case by
extracting common factors, and Hall stated his conjecture in this more
general way. However, he also stated it without the epsilon in the exponent,
and that does not work, as was realized later. As in the polynomial case,
Hall's conjecture describes how small Iu3

- v2
1 can be, and the answer is not

too small, as described by the right-hand side.
The Hall conjecture can also be interpreted as giving a bound for integral

relatively prime solutions of

v2 = u3 + b with integral b.

Then we find

More generally, in line with conjectured inequalities from Lang-Waldschmidt
[La 78], let us fix non-zero integers A, B and let u, v, k, m, n be variable,
with u, v relatively prime and mv > m + n. Put

Aum + Bo" = k.

By the abc conjecture, one derives easily that

(1) lui « No(k)mn-i'm+nPH) and Ivl « No(k)mn-rm+np+e).

From this one gets

Ikl «No(k)mn '(:+np+El.

The Hall conjecture is a special case after we replace No(k) with Ikl, because
No(k) s Ikl·

Next take m = 3 and n = 2, but take A = 4 and B = - 27. In this case
we write
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and we get
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(2) and

These inequalities are supposed to hold at first for u, v relatively prime.
Suppose we allow u, v to have some bounded common factor, say d. Write

u = u'd and v = v'd

with u', v' relatively prime. Then

D = 4d3u ,3 - 27d2v ,2.

Now we can apply inequality (1) with A = 4d3 and B = - 27d2
, and we find

the same inequalities (2), with the constant implicit in the sign « depending
also on d, or on some fixed bound for such a common factor. Under these
circumstances, we call inequalities (2) the generalized Szpiro conjecture.

The original Szpiro conjecture was stated in a more sophisticated situa
tion, cr. [La 90] for an exposition , and Szpiro's inequality was stated in the
form

IDI « N(D)6+t,

where N(D) is a more subtle invariant, but for our purposes , it is sufficient
and much easier to use the radical No(D).

The point of D is that it occurs as a discriminant. The trend of thoughts
in the direction we are discussing was started by Frey [Fr 87], who asso
ciated with each solution of a + b = c the polynomial

x(x - a)(x + b),

which we call the Frey polynomial. (Actually Frey associated the curve
defined by the equation y2 = x(x - a)(x + b), for much deeper reasons, but
only the polynomial on the right-hand side will be needed here.) The
discriminant of the polynomial is the product of the differences of the roots
squared, and so

We make a translation

b-a
~=x+-

3

to get rid of the x2-term, so that our polynomial can be rewritten

~3_Y2~- Y3 '

where Y2' Y3 are homogeneous in a, b of appropriate weight. The dis
criminant does not change because the roots of the polynomial in ~ are
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translations of the roots of the polynomial in x. Then

D = 4}'~ - 27}'~.

The translation with (b - a)/3 introduces a small denominator. One may
avoid this denominator by using the polynomial x(x - 3a)(x - 3b), so that
}'2 ' }'3 then come out to be integers, and one can apply the generalized Szpiro
conjecture to the discriminant, which then has an extra factor D = 36(abc)2.

It is immediately seen that the generalized Szpiro conjecture implies
asymptotic Fermat. Conversely :

Generalized Szpiro implies the abc conjecture.

Indeed, the correspondence (a, b)-(}'2 ' }'3 ) is invertible, and has the "right"
weight. A simple algebraic manipulation shows that the generalized Szpiro
estimates on }'2 ' }'3 imply the desired estimates on lal, Ibl. (Do Exercise 14.)
From the equivalence between abc and generalized Szpiro, one can use the
examples given earlier to show that the epsilon is needed in the Szpiro
conjecture.

F inall y, note that the pol ynomial case of the Mason-Stothers theorem and
the case of integers are not independent, or specifica lly the Davenport theorem
and Hall 's conjecture are related . Examples in the polynomial case parametrize
cases with integers when we substitute integers for the variables. Such examples
are given in [BCHS 65], one of them (due to Birch ) being

f(t) = t6 + 4t4 + 10t2 + 6 and g(t) = t9 + 6t7 + 21t5 + 35t3 + 6lt,

whence

deg(f(t)3 - g(t)2) = t deg f + 1.

This example shows that Davenport's inequality is best possible, because the
degree attains the lowest possible value permissible under the theorem.
Substituting large integral values of t == 2 mod 4 gives examples of similarly
low values for x3

- y2. For other connections of all these matters, cr. [La 90].
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§8. THE RESULTANT

In this section, we assume that the reader is familiar with determinants.
The theory of determinants will be covered later. The section can be viewed
as giving further examples of symmetric functions.

Let A be a commutative ring and let Vo, " " Vn , Wo, " " Wm be alge
braically independent over A. We form two polynomials:

i v(X) = vo x n+ + Vn,

gw(X) = wo X m + + wm •

We define the resultant of (v, w), or of i v' gw' to be the determinant

VOV1 . .. Vn

VOV1 ... Vn

VOV1 .. . Vn

WOW 1 • • • Wm

WOW 1 ... Wm

y

m+n

The blank spaces are supposed to be filled with zeros.
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If we substitute elements (a) = (ao, ... , an) and (b) = (bo, ... , bm) in A for
(v) and (w) respectively in the coefficients of fv and gw' then we obtain
polynomials fa and gb with coefficients in A, and we define their resultant to
be the determinant obtained by substituting (a) for (v) and (b) for (w) in the
determinant. We shall write the resultant of fv' gw in the form

Res(fv, gw) or R(v, w).

The resultant Res(fa , gb) is then obtained by substitution of (a), (b) for (v), (w)
respectively.

We observe that R(v, w) is a polynomial with integer coefficients, i.e. we
may take A = Z. If z is a variable, then

R(zv, w) = zmR(v, w) and R(v, zw) = znR(v, w)

as one sees immediately by factoring out z from the first m rows (resp. the
last n rows) in the determinant. Thus R is homogeneous of degree m in its
first set of variables, and homogeneous of degree n in its second set of
variables. Furthermore, R(v, w) contains the monomial

vow~

with coefficient 1, when expressed as a sum of monomials.

If we substitute 0 for Vo and Wo in the resultant, we obtain 0, because the
first column of the determinant vanishes.

Let us work over the integers Z. We consider the linear equations

vox n + ...

Let C be the column vector on the left-hand side, and let

be the column vectors of coefficients. Our equations can be written

C = xn+m-1Co + ... + I· Cm+n.

By Cramer's rule, applied to the last coefficient which is = 1,

R(v, w) = det(Co, .. . , Cm +n ) = det(Co, .. . , Cm +n- 1 ' C).
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From this we see that there exist polynomials <Pv.w and I/Jv.w in Z[v, w][X]
such that

({}. v.wfv + l/Jv.wgw = R(v,w) = Res(fv,fw) '

Note that R(v, w) E Z[v, w] but that the polynomials on the left-hand side
involve the variable X .

If ),: Z[v, w] -. A is a homomorphism into a commutative ring A and we
let ),(v) = (a), J1.(w) = (b), then

<Pa.da + I/Ja ,bgb = R(a, b) = Res(fa, fb)'

Thus from the universal relation of the resultant over Z we obtain a similar
relation for every pair of polynomials, in any commutative ring A.

Proposition 8.1. Let K be a subfield of a field L, and let fa, gb be
polynomials in K[X] having a common root ~ in L. Then R(a, b) = O.

Proof If fa(~) = gb(~) = 0, then we substitute ~ for X in the expression
obtained for R(a, b) and find R(a, b) = O.

Next , we shall investigate the relationship between the resultant and the
roots of our polynomials f v' gw . We need a lemma.

Lemma 8.2. Let h(X l' ... ,Xn) be a polynomial in n variables over the
integers Z. If h has the value 0 when we substitute Xl for X 2 and leave
the other Xi fixed (i #- 2), then h(X l , . .. , Xn) is divisible by Xl - X 2 in
Z[Xl , ... , Xn ].

Proof Exercise for the reader.

Let vo, t i - ... , tn ' WO' Ul , . .. , Urn be algebraically independent over Z and
form the polynomials

f v = vo(X - t l ) (X - tn) = voX n+ ... + vn,

gw = wo(X - ud (X - urn) = woXrn + ... + wrn·

Thus we let

and

We leave to the reader the easy verification that

are algebraically independent over Z.

Proposition 8.3. Notation being as above, we have
n rn

Res(fv, gw) = vowonn (ti - uJ
i ~ l j~l
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Proof Let S be the expression on the right-hand side of the equality in
the statement of the proposition.

Since R(v, w) is homogeneous of degree m in its first variables, and
homogeneous of degree n in its second variables, it follows that

R = v~woh(t, u)

where h(t, u) E Z[t, U]. By Proposition 8.1, the resultant vanishes when we
substitute t, for uj (i = 1, . .. , nand j = 1, ... , m), whence by the lemma, view
ing R as an element of Z[vo, wo, t, u] it follows that R is divisible by t, - Uj

for each pair (i,j). Hence S divides R in Z[vo, wo, t, u], because t, - uj is
obviously a prime in that ring, and different pairs (i,j) give rise to different
primes.

From the product expression for S, namely

(1)

we obtain

whence

(2)

Similarly,

(3)

n m

S = v~wo fl fl (ti - uj ) ,
i = 1 j=1

n n m

fl g(t;) = Wofl fl (ti - uj ) ,
i = 1 i=1 j=1

n

S = v~ fl g(tJ
i=1

m
S = (_l)nmwofl f(uJ

j=l

From (2) we see that S is homogeneous and of degree n in (w), and from (3)
we see that S is homogeneous and of degree m in (v). Since R has exactly the
same homogeneity properties, and is divisible by S, it follows that R = cS for
some integer c. Since both Rand S have a monomial v~w.:: occurring in
them with coefficient 1, it follows that c = 1, and our proposition is proved.

We also note that the three expressions found for S above now give us a
factorization of R. We also get a converse for Proposition 8.1.

Corollary 8.4. Let fa' gb be polynomials with coefficients in a field K, such
that aobo =F 0, and such that fa, gb split in factors of degree 1 in K[X].
Then Res(fa, gb) =°if and only if fa and gb have a root in common.

Proof Assume that the resultant is 0. If

fa = ao(X - (XI) (X - (Xn),

gb = bo(X - fJd (X - fJn)'

is the factorization of fa, gb' then we have a homomorphism
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Z[vo, t, wo, u] --+K

such that Vo1-+ ao, Wo1-+ bo, t, 1-+ CX j , and uj 1-+ {3j for all i, j. Then

o= Res(fa ' gb) = a:;'b~ TI TI (cx j - {3j ),
j j

IV, §8

whence fa , Ib have a root in common. The converse has already been
proved.

We deduce one more relation for the resultant in a special case. Let Iv be
as above,

I v(X) = voX · + ... + v. = vo(X - t1 ) •• • (X - t.).

From (2) we know that if I: is the derivative of lv' then

(4) Res(fv' I:) = V~-l TI f'(tJ
j

Using the product rule for differentiation, we find :

~
I :(X) = Lvo(X - td ... (X - t j) ... (X - t.),

j

~
I :(tJ = vo(tj - t1) ... (tj - tJ .. . (t j - t.),

where a roof over a term means that this term is to be omitted.
We define the discriminant of I v to be

D(fv) = D(v) = (_1).(.- 1l/2V~·-2 TI (tj - t).
j"' j

Proposition 8.5. Let I v be as above and have algebraically independent
coefficients over Z. Then

(5) Res(fv,/J = V~·- l TI (t j - t) = (-1)·(·- 1l/2voD(fv)'
j ",j

Proof One substitutes the expression obtained for I :(t j) into the prod
uct (4). The result follows at once.

When we substitute 1 for Vo, we find that the discriminant as we defined
it in the preceding section coincides with the present definition. In particular,
we find an explicit formula for the discriminant. The formulas in the special
case of polynomials of degree 2 and 3 will be given as exercises.

Note that the discriminant can also be written as the product

D(fv) = V~·-2 TI (t j - t)2.
i« ]

Serre once pointed out to me that the sign (_1)·(·-1)/2 was missing in the
first edition of this book, and that this sign error is quite common in the
literature, occurring as it does in van der Waerden, Samuel , and Hilbert (but
not in his collected works, corrected by Olga Taussky) ; on the other hand
the sign is correctly given in Weber's Algebra, Vol. I , 50.

For a continuation of this section, see Chapter IX, §3 and §4.



IV, §9

§9. POWER SERIES
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Let X be a letter, and let G be the monoid of functions from the set {X}
to the natural numbers. If v E N, we denote by X " the function whose value
at X is v. Then G is a multiplicative monoid, already encountered when we
discussed polynomials. Its elements are Xo, Xl, X 2

, •• • , Xv, . . . .
Let A be a commutative ring, and let A [eXJ] be the set of functions

from G into A, without any restriction. Then an element of A[[XJ] may be
viewed as assigning to each monomial X " a coefficient av E A. We denote
this element by

00

L avX v.
v=o

The summation symbol is not a sum, of course, but we shall write the above
expression also in the form

aoXo + alX I + ...

and we call it a formal power series with coefficients in A, in one variable.
We call ao, aI' ... its coefficients.

Given two elements of A[[XJ], say

00

L «x: and
v=o

we define their product to be

where

Just as with polynomials, one defines their sum to be

00

L (av + ssx:
v=o

Then we see that the power series form a ring, the proof being the same as
for polynomials.

One can also construct the power series ring in several variables
A[[Xl , • .• , XnJ] in which every element can be expressed in the form

La(V)X;' .. . X;" = La(v)M(v)(X I , ••• , Xn)
(v)

with unrestricted coefficients a(v) in bijection with the n-tuples of integers
(VI' ... , vn ) such that Vi ~ 0 for all i. It is then easy to show that there is an
isomorphism between A[[XI , .•• , XnJ] and the repeated power series ring
A[[XlJ] . . . [[XnJ]. We leave this as an exercise for the reader .
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The next theorem will give an analogue of the Euclidean algorithm for
power series. However, instead of dealing with power series over a field, it is
important to have somewhat more general coefficients for certain applica
tions, so we have to introduce a little more terminology.

Let A be a ring and I an ideal. We assume that
00n t: = {O}.

v= l

We can view the powers P as defining neighborhoods of 0 in A, and we can
transpose the usual definition of Cauchy sequence in analysis to this situation,
namely: we define a sequence {an} in A to be Cauchy if given some power P
there exists an integer N such that for all m, n ~ N we have

am - an EP.

Thus P corresponds to the given E of analysis. Then we have the usual
notion of convergence of a sequence to an element of A. One says that A is
complete in the I-adic topology if every Cauchy sequence converges.

Perhaps the most important example of this situation is when A is a local
ring and I = m is its maximal ideal. By a complete local ring, one always
means a local ring which is complete in the m-adic topology.

Let k be a field. Then the power series ring

R = k[eX1 , • • • , XnJJ

in n variables is such a complete local ring. Indeed, let m be the ideal
generated by the variables Xl' .. . , Xn• Then Rim is naturally isomorphic to
the field k itself, so m is a maximal ideal. Furthermore, any power series of
the form

f(X) = Co - f1(X)

with Co E k, Co =f 0 and f1 (X) E m is invertible. To prove this, one may first
assume without loss of generality that Co = 1. Then

(1 - f1(X))-1 = 1 + f1(X) + f1(X)2 + f1(X)3 + ...
gives the inverse. Thus we see that m is the unique maximal ideal and R is
local. It is immediately verified that R is complete in the sense we have just
defined. The same argument shows that if k is not a field but Co is invertible
in k, then again f(X) is invertible. '

Again let A be a ring. We may view the power series ring in n variables
(n > 1) as the ring of power series in one variable X; over the ring of power
series in n - 1 variables, that is we have a natural identification

A[eX1, .• • , XnJJ = A[eX1 , . • • , Xn-1J] [eXnJ].
If A = k is a field, the ring k[[X1 , •• • , Xn- 1JJ is then a complete local

ring . More generally, if 0 is a complete local ring, then the power series ring
o[eXJ] is a complete local ring, whose maximal ideal is (m, X) where m is
the maximal ideal of o. Indeed, if a power series L: a.X" has unit constant
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term ao E 0*, then the power series is a unit in 0 [[X]], because first, without
loss of generality, we may assume that ao = 1, and then we may invert 1 + h
with h E (m, X) by the geometric series 1 - h + h1 - h3 + ... .

In a number of problems, it is useful to reduce certain questions about
power series in several variables over a field to questions about power series
in one variable over the more complicated ring as above. We shall now
apply this decomposition to the Euclidean algorithm for power series.

Theorem 9.1. Let 0 be a complete local ring with maximal ideal m. Let

00

f(X) = L aiX i
i=O

be a power series in o[[X]] (one variable), such that not all a, lie in m.
Say ao, ... , an-1 Em, and an E 0* is a unit. Given g E o[[X]] we can solve
the equation

g=qf+r

uniquely with q E o[[X]], r E o[X], and deg r ~ n - 1.

Proof (Manin). Let a and r be the projections on the beginning and
tail end of the series, given by

n-1
a: L biXiH L biX i = bo + b1X + ... + bn_1X

n-1
,

i= O

00

r: LbiXiH L biX i-n = b; + s.;» + bn+1X1 + ... .
i=n

Note that r(hX n) = h for any h « o[[X]] ; and h is a polynomial of degree
< n if and only if r(h) = O.

The existence of q, r is equivalent with the condition that there exists q
such that

r(g) = r(qf).

Hence our problem is equivalent with solving

r(g) = r(qa(f)) + r(qr(f)Xn) = r(qa(f)) + qr(f).

Note that r(f) is invertible. Put Z = qr(f). Then the above equation is
equivalent with

(
a(f)) ( a(f))r(g) = r Z r(f) + Z = I + r 0 r(f) Z.

Note that

a(f)
r 0 r(f) : o[[X]] -+ mo[[X]],

because a(f)/r(f) E mo [[X]]. We can therefore invert to find Z, namely
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(
1X(f»)-1

Z = I + r 0 r(f) r(g),

which proves both existence and uniqueness and concludes the proof.

IV, §9

Theorem 9.2. (Weierstrass Preparation). The power series J in the pre
vious theorem can be written uniquely in the form

J(X) = (xn + bn_1Xn- l + .. . + bo)u,

where b, E m, and u is a unit in o[[X]].

Proof Write uniquely

X" = qJ + r,

by the Euclidean algorithm. Then q is invertible, because

q = Co + clX + "',
J = ... + anXn+ ...,

so that
1 == coan (mod m),

and therefore Co is a unit in o. We obtain qJ = X" - r, and

J = q-l(X n - r),

with r == 0 (mod m). This proves the existence. Uniqueness is immediate.

The integer n in Theorems 9.1 and 9.2 is called the Weierstrass degree of f,
and is denoted by degw f . We see that a power series not all of whose coeffi
cients lie in m can be expressed as a product of a polynomial having the given
Weierstrass degree, times a unit in the power series ring. Furthermore, all
the coefficients of the polynomial except the leading one lie in the maximal
ideal. Such a polynomial is called distinguished, or a Weierstrass polynomial.

Remark. I rather like the use of the Euclidean algorithm in the proof of
the Weierstrass Preparation theorem. However, one can also give a direct
proof exhibiting explicitly the recursion relations which solve for the coeffi
cients of u, as follows. Write u = LCiX

i
• Then we have to solve the

equations
bo co = ao,

bOcl + blCo = al ,

bOcn- l + .,. + bn - l Co = an - l ,

bocn+ + Co = an'

bOcn+l + + Cl = an+l ,
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In fact, the system of equations has a unique solution mod m" for each
positive integer r, after selecting Co to be a unit, say Co = 1. Indeed, from
the first n equations (from °to n - 1) we see that bo,"" bn- 1 are uniquely
determined to be °mod m. Then Cn' Cn+1 ' • .• are uniquely determined
mod m by the subsequent equations. Now inductively, suppose we have
shown that the coefficients b.; cj are uniquely determined mod m'. Then one
sees immediately that from the conditions ao, .. . , an- 1 == °mod m the first n
equations define b, uniquely mod m, +l because all b, == °mod m. Then
the subsequent equations define cj mod m,+l uniquely from the values of
b, mod m,+l and cj mod m' . The unique system of solutions mod m' for each
r then defines a solution in the projective limit , which is the complete local
ring.

We now have all the tools to deal with unique factorization in one important
case.

Theorem 9.3. Let k be afield. Then k[[XI , ... , Xnll is factorial .

Proof. Letf(x) = f(X I> ... , Xn ) E k[[X]] be =1= 0. After making a sufficiently
general linear change of variables (when k is infinite)

Xi = L cijYj with Cij E k,

we may assume without loss of generality thatf(O, . .. , 0, xn ) =1= 0. (When k is
finite , one has to make a non-linear change, cf. Theorem 2.1 of Chapter VIII .)
Indeed , if we write f(X) = fd(X) + higher terms, where fiX) is a homogeneous
polynomial of degree d ~ 0, then changing the variables as above preserves the
degree of each homogeneous component of f, and since k is assumed infinite,
the coefficients Cij can be taken so that in fact each power Y1 (i = I, . .. , n)

occurs with non-zero coefficient.
We now proceed by induction on n. Let R; = k[[XI> . . . , Xnll be the power

series in n variables , and assume by induction that Rn - 1 is factorial. By Theorem
9.2, writef= gu where u is a unit and 9 is a Weierstrass polynomial in Rn - I[Xn] .

By Theorem 2.3, Rn-I[Xn] is factorial, and so we can write 9 as a product of
irreducible elements gl' . . . , gr E Rn- I[Xn], sof = gl ... gru, where the factors
gi are uniquely determined up to multiplication by units . This proves the existence
of a factorization . As to uniqueness, suppose f is expressed as a product of
irreducible elements in Rn , f = fl ... fs· Then fiO, . . . , 0 , xn ) =1= °for each
q = I, . . . , s, so we can write fq = hqu~ where u~ is a unit and hq is a Weierstrass

polynomial, necessarily irreducible in Rn-I[Xn]. Then f = gu= nhq nu~
with 9 and all hq Weierstrass polynomials . By Theorem 9.2 , we must have

9 = n hq , and since s. :dXn ] is factorial, it follows that the polynomials hq
are the same as the polynomials gi' up to units. This prove s uniqueness .

Remark. As was pointed out to me by Dan Anderson , I incorrectly stated
in a previous printing that if .,0 is a factorial complete local ring, then cuxn
is also factorial. This assertion is false, as shown by the example

k(t )[[Xl' X2 , X3]]/(X? + xi + x j)
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due to P. Salmon, Su un problema posto da P. Samuel, Atti Acad. Naz. Lincei
Rend. Cl. Sc. Fis. Matern. 40(8) (1966) pp. 801-803 . It is true that if c is a
regular local ring in addition to being complete, then ()[[X]] is factorial, but this
is a deeper theorem . The simple proof I gave for the power series over a field
is classical. I chose the exposition in [GrH 78].

Theorem 9.4. If A is Noetherian, then A[[X]] is also Noetherian .

Proof Our argument will be a modification of the argument used in the
proof of Hilbert's theorem for polynomials. We shall consider elements of
lowest degree instead of elements of highest degree.

Let ~ be an ideal of A [[X]]. We let a j be the set of elements a E A such
that a is the coefficient of x' in a power series

aX i + terms of higher degree

lying in~. Then ai is an ideal of A, and ai C Qi+l (the proof of this assertion
being the same as for polynomials). The ascending chain of ideals stops:

As before, let aij (i = 0, ... , rand j = 1, ... , n;) be generators for the ideals
a j , and let hj be power series in A having aij as beginning coefficient.
Given f E~, starting with a term of degree d, say d ~ r, we can find
elements C1 1 •• • I cnd E A such that

f - Cildl - •• • - cnJdnd

starts with a term of degree ~ d + 1. Proceeding inductively, we may as
sume that d > r. We then use a linear combination

f - C(d)Xd-rf, - '" - C(d) xd-rf,
1 r1 ftr rn,.

to get a power series starting with a term of degree ~ d + 1. In this way, if
we start with a power series of degree d > r, then it can be expressed as a
linear combination of frl' . . . ,fmr by means of the coefficients

<Xl <Xl

gl(X) = L civ)xv-r, .. . , gnJX) = L ct)xv-r,
v=d v=d

and we see that the hj generate our ideal ~, as was to be shown.

Corollary 9.5. If A is a Noetherian commutative ring, or a field , then
A[[Xl , • • . , XnJ] is Noetherian.

Examples. Power series in one variable are at the core of the theory of
functions of one complex variable, and similarly for power series in several
variables in the higher-dimensional case. See for instance [Gu 90].

Weierstrass polynomials occur in several contexts. First, they can be used
to reduce questions about power series to questions about polynomials, in
studying analytic sets. See for instance [GrH 78], Chapter O. In a number-
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theoretic context, such polynomials occur as characteristic polynomials in
the Iwasawa theory of cyclotomic fields. Cf. [La 90J, starting with Chapter
5.

Power series can also be used as generating functions. Suppose that to
each positive integer n we associate a number a(n). Then the generating
function is the power series La(nW. In significant cases, it turns out that
this function represents a rational function , and it may be a major result to
prove that this is so.

For instance in Chapter X, §6 we shall consider a Poincare series,
associated with the length of modules. Similarly, in topology, consider a
topological space X such that its homology groups (say) are finite dimen
sional over a field k of coefficients. Let h; = dim Hn(X, k), where H; is the
n-th homology group. The Poincare series is defined to be the generating
series

Examples arise in the theory of dynamical systems. One considers a
mapping T: X --+ X from a space X into itself, and we let N; be the number
of fixed points of the n-th iterate T" = T oT 0 • •• 0 T (n times). The generat
ing function is LNntn. Because of the number of references I give here, I
list them systematically at the end of the section . See first Artin-Mazur
[ArM 65J ; a proof by Manning of a conjecture of Smale [Ma 71J ; and
Shub's book [Sh 87J, especially Chapter 10, Corollary 10.42 (Manning's
theorem).

For an example in algebraic geometry, let V be an algebraic variety
defined over a finite field k. Let K; be the extension of k of degree n (in a
given algebraic closure). Let N; be the number of points of V in Kn • One
defines the zeta function Z(t) as the power series such that Z(O) = I and

00

Z' /Z(t) = L Nntn-l
.

n=l

Then Z( t) is a rational function (F. K. Schmidt when the dimension of V is 1,
and Dwork in higher dimensions) . For a discussion and references to the
literature, see Appendix C of Hartshorne [Ha 77] .

Finally we mention the partition function p(n), which is the number of
ways a positive integer can be expressed as a sum of positive integers. The
generating function was determined by Euler to be

00 00

I + L p(n)tn = TI (I - tnr l
•

n=l n=l

See for instance Hardy and Wright [HardW 71J, Chapter XIX. The generat
ing series for the partition function is related to the power series usually
expressed in terms of a variable q, namely
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00 00

~ = q TI (1 - qn)24 = L r(n)qn,
n=l n=l

IV,§9

which is the generating series for the Ramanujan function r(n) . The power
series for ~ is also the expansion of a function in the theory of modular
functions. For an introduction, see Serre's book ESe 73], last chapter, and
books on elliptic functions, e.g. mine. We shall mention one application of
the power series for ~ in the Galois theory chapter.

Generating power series also occur in K-theory, topological and algebraic
geometric, as in Hirzebruch's formalism for the Riemann-Roch theorem and
its extension by Grothendieck. See Atiyah [At 67], Hirzebruch [Hi 66], and
[FuL 86]. I have extracted some formal elementary aspects having directly
to do with power series in Exercises 21-27, which can be viewed as basic
examples. See also Exercises 31-34 of the next chapter.
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EXERCISES

EXERCISES 213

1. Let k be a field and f(X) E k[X] a non-zero polynomial. Show that the following
conditions are equivalent:
(a) The ideal U(X)) is prime.
(b) The ideal U(X)) is maximal.
(c) f(X) is irreducible.

2. (a) State and prove the analogue of Theorem 5.2 for the rational numbers.
(b) State and prove the analogue of Theorem 5.3 for positive integers.

3. Let f be a polynomial in one variable over a field k. Let X, Y be two variables.
Show that in k[X, Y] we have a "Taylor series" expansion

n

f(X + Y) = f(X) + L q>i(X) y i
,

i = 1

where q>i(X) is a polynomial in X with coefficients in k. If k has characteristic 0,
show that

D'i(X)
q>i(X) = - .-,- .

1.

4. Generalize the preceding exercise to polynomials in several variables (introduce
partial derivatives and show that a finite Taylor expansion exists for a polynomial
in several variables).

5. (a) Show that the polynomials X4 + 1 and X6 + X3 + 1 are irreducible over the
rational numbers.

(b) Show that a polynomial of degree 3 over a field is either irreducible or has a
root in the field. Is X3

- 5X 2 + 1 irreducible over the rational numbers?
(c) Show that the polynomial in two variables X2 + y 2

- 1 is irreducible over
the rational numbers. Is it irreducible over the complex numbers ?

6. Prove the integral root test of §3.

7. (a) Let k be a finite field with q = r" elements. Let f (XI , . . . , Xn ) be a polynomial
in k[X] of degree d and assume f (O, . . . , 0) = O. An element (al , .. . ,an) E k(n)
such that f (a) = 0 is called a zero of f . If n > d, show that f has at least one
other zero in k(n). [Hint: Assume the contrary, and compare the degrees of the
reduced polynomial belonging to

1 - f(X)q-l

and (1 - Xr1 ) ... (1 - X:-1) . The theorem is due to Chevalley.]
(b) Refine the above results by proving that the number N of zeros of f in kIn) is

;: 0 (mod p), arguing as follows. Let i be an integer ~ 1. Show that

L X i = {q - 1 = -1 if q- 1 divides i,
"'ek 0 otherwise.

Denote the preceding function of i by "'(i) . Show that
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N= L (l- / (x)q- I )
xe l C"1

and for each n-tuple (iI' . . . , i. ) of integers f:; 0 that

L X:' ... X~" = "'(iIl ... "'(i.).
xe kf

" '

IV, Ex

Show that both terms in the sum for N above yield 0 mod p. (The above
argument is due to Warning.)

(e) Extend Chevalley's theorem to r polynomials II ' ... , f, of degrees dl , • •• , d,
respectively, in n variables. If they have no constant term and n > Ld j , show
that they have a non-trivial common zero.

(d) Show that an arbitrary function I: k(·) -> k can be represented by a poly
nomial. (As before, k is a finite field.)

8. Let A be a commutative entire ring and X a variable over A. Let a, b E A and
assume that a is a unit in A. Show that the map X 1-+ aX + b extends to a
unique automorphism of A[X] inducing the identity on A. What is the inverse
automorphism?

9. Show that every automorphism of A[X ] inducing the identity on A is of the type
described in Exercise 8.

10. Let K be a field, and K(X) the quotient field of K[X]. Show that every automorphism
of K(X) which induces the identity on K is of type

aX +b
X 1-+ --

eX +d

with a, b, e, d e K such that (aX + bl/(eX + d) is not an element of K , or
equivalently, ad - be i= O.

11. Let A be a commutative entire ring and let K be its quotient field. We show here
that some formulas from calculus have a purely algebraic setting. Let D: A -> A
be a derivation, that is an additive homomorphism satisfying the rule for the
derivative of a product, namely

D(xy) = xDy + yDx for x, yEA.

(a) Prove that D has a unique extension to a derivation of K into itself, and that
this extension satisfies the rule

/
yDx - xDy

D(x y) = 2
Y

for x, yEA and y i= O. [Define the extension by this formula, prove that it is
independent of the choice of x, y to write the fraction x/y, and show that it
is a derivation having the original value on elements of A.]

(b) Let L(x) = Dxlx for x E K*. Show that L(xy) = L(x) + L(y). The homo
morphism L is called the logarithmic derivative.

(c) Let D be the standard derivative in the polynomial ring k[X] over a field k.
Let R(X) = en (X - IXJm, with IXj E k, eE k, and m j E Z, so R(X) is a rational
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function. Show that
m·

R'/R=I -'- ·
X- Cl j

EXERCISES 215

12. (a) If f(X) = aX2 + bX + c, show that the discriminant of f is b2 - 4ac.
(b) If f (X ) = aoX

3 + a lX
2 + a2X + a3, show that the discriminant of f is

afa~ - 4aoa~ - 4a~a3 - 27a6a~ + 18aoa,a2a3·

(c) Let f( X) = (X - t I) . .. (X - tn)' Show that

n

D
f

= (_1)n(n- l l/2 Il f'( tJ
i=1

13. Polynomials will be taken over an algebraically closed field of characteristic O.
(a) Pro ve

Davenport's theorem. Let f (t), g(t) be polynomials such that f3 - g2 f:. O. Then

deg(f3 - g2) ~ t deg f + I.

Or put another way, let h = f3 - g2 and assume h f:. O. Then

deg f ~ 2 deg h - 2.

To do this, first assume f, 9 relatively prime and apply Mason's theorem . In
general, proceed as follows.

(b) Let A, B, f , 9 be polynomials such that Af, Bg are relatively prime f:. O. Let
h = AJ3 + Bg2. Then

deg f ~ deg A + deg B + 2 deg h - 2.

This follows directly from Mason 's theorem. Then starting with f, 9 not
necessarily relatively prime, start factoring out common factors until no
longer possible, to effect the desired reduction. When I did it, I needed to do
this step three times, so don't stop until you get it.

(c) Generalize (b) to the case of Jm- q" for arbit rary positive integer exponents
m and n.

14. Prove that the generalized Szpiro conjecture implies the abc conjecture .

15. Pro ve that the abc conjecture implies the following conjecture : There are infinitely
many primes p such that 2 p-1 ¥= 1 mod p2. [Cf. the reference [Sil 88] and [La 90]
at the end of §7.]

16. Let w be a complex number, and let c = max(l , [wl), Let F, G be non-zero
polynomials in one variable with complex coefficients, of degrees d and d' respec
tively, such that In IGI ~ 1. Let R be their resultant. Then

IRI ~ Cd+d' [ IF(w)1+ IG(w) l] \F ld'IGld(d + d,)d+d'.

(We denote by IFI the maximum of the abso lute values of the coefficients of F.)

17. Let d be an integer ~ 3. Pro ve the existence of an irreducible polynomial of
degree dover Q, having precisely d - 2 real roots , and a pair of complex
conjugate roots . Use the following construction. Let b, .. . , bd- 2 be distinct
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integers, and let a be an integer > O. Let

g(X) = (X2+ a)(X - bI) · · · (X - bd- 2) = X d + Cd_IX d- 1+ .. .+ co.

Observe that Cj E Z for all i. Let p be a prime number, and let

IV, Ex

so that g. converges to 9 (i.e, the coefficients of g. converge to the coefficients
of g).
(a) Prove that g. has precisely d - 2 real roots for n sufficiently large. (You may

use a bit of calculus, or use whatever method you want.)
(b) Prove that g. is irreducible over Q.

Integral-valued polynomials

18. Let P(X) E Q[XJ be a polynomial in one variable with rational coefficients. It
may happen that P(n) E Z for all sufficiently large integers n without necessarily P
having integer coefficients.
(a) Give an example of this.
(b) Assume that P has the above property. Prove that there are integers

Co, C1, .. . , c, such that

P(X) = co(~) + Cl (,: 1) + ...+ C"

where

(X)= .!-X(X _1). .. (X - r + 1)
r r!

is the binomial coefficient function. In particular, P(n) E Z for all n. Thus we
may call P integral valued.

(c) Let f : Z -+ Z be a function. Assume that there exists an integral valued
polynomial Q such that the difference function I1f defined by

(l1f)(n) = f(n) - f(n - 1)

is equal to Q(n) for all n sufficiently large positive. Show that there exists an
integral-valued polynomial P such that f(n) = P(n) for all n sufficiently large.

Exercises on symmetric functions

19. (a) Let XI'" '' X. be variables. Show that any homogeneous polynomial in
Z[X1, .. . , X.J of degree> n(n - 1) lies in the ideal generated by the elemen
tary symmetric functions sl' . .. , s•.

(b) With the same notation show that Z[X1 , . .. ,X.J is a free Z[SI, .. . ,S.J
module with basis the monomials

Xlr ) = X~1 ... X;"

with 0 :;;; rj :;;; n - i.
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(c) Let XI' " ', Xn and f l , .,. , fm be two independent sets of variables. Let
sI ' • , • , Sn be the elementary symmetric functions of X and s~, . . . , s~ the
elementary symmetric functions of f (using vector vector notation). Show
that Z[X, Y] is free over Z[s, s'] with basis X(rlf(q), and the exponents (r), (q)
satisfying inequalities as in (b).

(d) Let I be an ideal in Z[s, s']. Let J be the ideal generated by I in Z[X, Y].
Show that

J II Z[s, s'] = I .

20. Let A be a commutative ring. Let t be a variable. Let

m

f(t) = I a/
i=O

and
n

g(t) = I b/
i=O

be polynomials whose constant terms are ao = bo = 1. If

f(t)g(t) = 1,

show that there exists an integer N (= (m + n)(m + n - 1)) such that any mono
mial

with Ijrj > N is equal to O. [Hint : Replace the a's and b's by variables. Use
Exercise 19(b) to show that any monomial M(a) of weight> N lies in the ideal I
generated by the elements

k

Ck = I aibk - i
i=O

(letting ao = bo = 1). Note that Ck is the k-th elementary symmetric function of
the m + n variables (X, f).]
[Note : For some interesting contexts involving symmetric functions, see
Cartier's talk at the Bourbaki Seminar, 1982-1983.]

.A.-rings

The following exercises start a train of thought which will be pursued in Exercise
33 of Chapter V; Exercises 22-24 of Chapter XVIII; and Chapter XX, §3. These
originated to a large extent in Hirzebruch's Riemann-Roch theorem and its extension
by Grothendieck who defined l -rings in general.

Let K be a commutative ring. By A.-operations we mean a family of mappings

li :K-+K

for each integer i ~ 0 satisfying the relations for all x E K :

and for all integers n ~ 0, and x, y E K,

n

In(x + y) = I l i(X)ln-i (y).
i=O
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The reader will meet examples of such operations in the chapter on the alternat
ing and symmetric products, but the formalism of such operations depends only
on the above relations, and so can be developed here in the context of formal
power series. Given a A-operation, in which case we also say that K is a loring,
we define the power series

00

A,(x)= L }8x)t i.
i : O

Prove the following statements.

21. The map x,-d,(x) is a homomorphism from the additive group of K into the
multiplicative group of power series I + tK[[t]] whose constant term is equal to
1. Conversely, any such homomorphism such that A.,(x) = 1 + xt + higher terms
gives rise to A.-operations.

22. Let s = at + higher terms be a power series in K[[t]] such that a is a unit in K.
Show that there is a power series

with biE K .

Show that any power series f(t) E K[[t]] can be written in the form h(s) for some
other power series with coefficients in K .

Given a ).-operation on K, define the corresponding Grothendieck power series

y,(x) = A.t/(l - ' )(x) = A.s(x)

where s = t/(I - r), Then the map

X f-+ y,(x)

is a homomorphism as before. We define 'l'i(X) by the relation

y,(x) = L: 'l'i(X)t i.

Show that l' satisfies the following properties.

23. (a) For every integer n ~ 0 we have

"'l'"(x + Y) = L yi(X)y"- i(y).
i=O

(b) 1',(1) = 1/(1 - t).
(c) 1',( -1) = 1 - 1.

24. Assume that A.iU= 0 for i > 1. Show :
(a) y,(u - 1) = 1 + (u - l)t.

00

(b) 1',(1 - u) = L (1 - U)iti.
i = O

25. Bernoulli numbers. Define the Bernoulli numbers Bk as the coefficients in the
power series

t 00 t k

F(t) = -,- = L Bk k f •
e - I k :O •
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Of course, e' = I t"In ! is the standard power series with rational coefficients lin!.
Prove :
(a) Bo = I, BI = -!, B2 = !.
(b) F(-t) = t + F(t), and Bk = 0 if k is odd #-1.

26. Bernoulli polynomials. Define the Bernoul1i polynomials Bk(X) by the power
series expansion

te'X 00 tk

F(t, X) = -,- = I Bk(X) -k
i
'

e - I k=O .

It is clear that Bk = Bk(O), so the Bernoul1i numbers are the constant terms of the
Bernoul1i polynomials. Prove :
(a) Bo(X) = I, BI(X) = X -1, B2(X) = x 2

- X + i.
(b) For each positive integer N,

N-l (X + a)Bk(X) = N k- I I B, - - .
0=0 N

(c) Bk(X) = x k -1kXk-1 + lower terms .
tk

(d) F(t, X + I) - F(t, X) = te" = t I x:k!'

(e) Bk(X + I) - Bk(X) = kXk-1 for k ~ 1.

27. Let N be a positive integer and let f be a function on ZINZ. Form the power
series

N-I te(O+X),
FAt, X) = I f(a) -N-'- .

0=0 e - I

Following Leopoldt, define the generalized Bernoulli polynomials relative to the
function f by

In particular, the constant term of Bk.j(X) is defined to be the generalized
Bernoulli number Bk.j = Bk,f(O) introduced by Leopoldt in cyclotomic fields.
Prove:
(a) Fj(t, X + k) = ek'Fj(t, X) .
(b) Fj(t, X + N) - Fj(t, X) = (eN' - I)Fj(t, X) .

I N-I

(c) k[Bk,f(X + N) - Bk.j(X)] = o~o f(a)(a + X)k-1 .

(d) Bk.j(X) = i~G) Bi,jX
n

-
i

= Bk,f + kBk-l,fX + ... + kBl,jXk-1 + BO,fXk.

Note. The exercises on Bernoulli numbers and polynomials are designed not
only to give examples for the material in the text, but to show how this material
leads into major areas of mathematics : in topology and algebraic geometry centering
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around Riemann-Roch theorems; analytic and algebraic number theory, as in the
theory of the zeta functions and the theory of modular forms, cf. my Introduction
to Modular Forms, Springer-Verlag, New York, 1976, Chapters XIV and XV; my
Cyclotomic Fields, I and II, Springer-Verlag, New York, 1990, Chapter 2, §2; Kubert
Lang's Modular Units, Springer-Verlag, New York, 1981 ; etc.

Further Comments, 1996-2001. I was informed by Umberto Zannier that what has
been called Mason's theorem was proved three years earlier by Stothers [Sto 81], Theo
rem 1.1. Zannier himself has published some results on Davenport's theorem [Za 95],
without knowing of the paper by Stothers, using a method similar to that of Stothers,
and rediscovering some of Stothers' results, but also going beyond. Indeed, Stothers uses
the "Belyi method" belonging to algebraic geometry, and increasingly appearing as a
fundamental tool. Mason gave a very elementary proof, accessible at the basic level of
algebra . An even shorter and very elegant proof of the Mason-Stothers theorem was
given by Noah Snyder [Sny 00]. I am much indebted to Snyder for showing me that
proof before publication , and I reproduced it in [La 99b]. But I recommend looking at
Snyder's version.

[La 99b] S. LANG, Math Talksfor Undergraduates, Springer Verlag 1999

[Sny 00] N. SNYDER, An alternate proof of Mason's theorem, Elemente der Math. 55
(2000) pp. 93-94

[Sto 81] W. STOTHERS, Polynomial identities and hauptmoduln, Quart. 1. Math. Oxford
(2) 32 (1981) pp. 349- 370

[Za 95] U. ZANNIER, On Davenport's bound for the degree of /3 - g 2 and Riemann 's
existence theorem, Acta Arithm. LXXI.2 (1995) pp. 107-137



Part Two

ALGEBRAIC
EQUATIONS

This part is concerned with the solutions of algebraic equations, in one
or several variables. This is the recurrent theme in every chapter of this
part, and we lay the foundations for all further studies concerning such
equations.

Given a subring A of a ring B, and a finite number of polynomials
f1' ... , fn in A[X1, . .. , XnJ, we are concerned with the n-tuples

(b 1 , .. . , bn ) E B(n)

such that

for i = 1, .. . , r. For suitable choices of A and B, this includes the general
problem of diophantine analysis when A, B have an "arithmetic" structure.

We shall study various cases. We begin by studying roots of one polyno
mial in one variable over a field. We prove the existence of an algebraic
closure, and emphasize the role of irreducibility.

Next we study the group of automorphisms of algebraic extensions of a
field, both intrinsically and as a group of permutations of the roots of a
polynomial. We shall mention some major unsolved problems along the
way.

It is also necessary to discuss extensions of a ring, to give the possibil
ity of analyzing families of extensions. The ground work is laid in Chapter
VII.

In Chapter IX, we come to the zeros of polynomials in several variables,
essentially over algebraically closed fields. But again, it is advantageous to

221
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consider polynomials over rings, especially Z, since in projective space, the
conditions that homogeneous polynomials have a non-trivial common zero
can be given universally over Z in terms of their coefficients.

Finally we impose additional structures like those of reality, or metric
structures given by absolute values. Each one of these structures gives rise to
certain theorems describing the structure of the solutions of equations as
above, and especially proving the existence of solutions in important cases.



CHAPTER V
Algebraic Extensions

In this first chapter concerning polynomial equations, we show that given
a polynomial over a field, there always exists some extension of the field
where the polynomial has a root, and we prove the existence of an algebraic
closure. We make a preliminary study of such extensions, including the
automorphisms, and we give algebraic extensions of finite fields as examples.

§1. FINITE AND ALGEBRAIC EXTENSIONS

Let F be a field. If F is a subfield of a field E, then we also say that E is
an extension field of F. We may view E as a vector space over F, and we say
that E is a finite or infinite extension of F according as the dimension of this
vector space is finite or infinite.

Let F be a subfield of a field E. An element (I( of E is said to be algebraic
over F if there exist elements ao, ... , an (n ~ 1) of F, not all equal to 0, such
that

If (I( ¥- 0, and (I( is algebraic, then we can always find elements a, as above
such that ao ¥- °(factoring out a suitable power of (I().

Let X be a variable over F. We can also say that (I( is algebraic over F if
the homomorphism

F[X] -. E

223
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which is the identity on F and maps X on ex has a non-zero kernel. In that
case the kernel is an ideal which is principal, generated by a single polyno
mial p(X), which we may assume has leading coefficient 1. We then have an
isomorphism

F[X]/(p(X)) ~ F[ex],

and since F[ex] is entire, it follows that p(X) is irreducible. Having normal
ized p(X) so that its leading coefficient is 1, we see that p(X) is uniquely
determined by ex and will be called THE irreducible polynomial of ex over F.
We sometimes denote it by Irr(ex, F, X).

An extension E of F is said to be algebraic if every element of E is
algebraic over F.

Proposition 1.1. Let E be a finite extension of F. Then E is algebraic
over F.

Proof. Let ex E E, ex ¥= 0. The powers of ex,

cannot be linearly independent over F for all positive integers n, otherwise
the dimension of E over F would be infinite. A linear relation between these
powers shows that ex is algebraic over F.

Note that the converse of Proposition 1.1 is not true; there exist infinite
algebraic extensions . We shall see later that the subfield of the complex
numbers consisting of all algebraic numbers over Q is an infinite extension
ofQ.

If E is an extension of F, we denote by

[E:F]

the dimension of E as vector space over F. It may be infinite.

Proposition 1.2. Let k be a field and FeE extension fields of k. Then

[E :k] = [E :F] [F :k].

If {Xi} iel is a basis for F over k and {Yj}jeJ is a basis for E over F, then
{XiYj}(i .j)el xJ is a basis for E over k.

Proof. Let Z E E. By hypothesis there exist elements exj E F, almost all
exj = 0, such that

For each j E J there exist elements bji E k, almost all of which are equal to 0,
such that
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and hence
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This shows that {XiYj} is a family of generators for E over k. We must show
that it is linearly independent. Let {ciJ be a family of elements of k, almost
all of which are 0, such that

Then for each j ,

because the elements Yj are linearly independent over F, Finally cij = 0 for
each i because {x.] is a basis of F over k, thereby proving our proposition.

Corollary 1.3. The extension E of k is finite if and only if E is finite over
F and F is finite over k.

As with groups, we define a tower of fields to be a sequence

r, C F2 C ' " C t;

of extension fields . The tower is called finite if and only if each step is finite .
Let k be a field, E an extension field, and a E E. We denote by k(a) the

smallest subfield of E containing both k and a. It cons ists of all quotients
f(a) /g(a), where f, 9 are polynomials with coefficients in k and g(a) i= O.

Proposition 1.4. Let a be algebraic over k. Then k(a) = k[a], and k(a) is
fin ite over k. The degree [k(a): k] is equal to the degree of Irrt«, k, X).

Proof. Let p(X) = Irr(a, k, X). Let f(X) E k[X] be such that f(a) i= O.
Then p(X) does not divide f(X), and hence there exist polynomials g(X),
h(X) E k[X] such that

g(X)p(X) + h(X)f(X) = 1.

From this we get h(a)f(a) = 1, and we see that f(a) is invertible in k[a].
Hence k[a] is not only a ring but a field, and must therefore be equal to
k(a). Let d = deg p(X). The powers

1, a, ... , ad
-

l

are linearly independent over k, for otherwise suppose

ao + ala + ... + ad_lad-l = 0
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with a, E k, not all a, = O. Let g(X) = ao + ... + ad-I X d-I. Then g =F 0 and
g(lX) = O. Hence p(X) divides g(X) , contradiction. Finally, let f( lX) E k[IX] ,
where f(X) E k[X]. There exist polynomials q(X), r(X) E k[X] such that
deg r < d and

f(X) = q(X)p(X) + r(X) .

Then f(lX) = r(IX), and we see that 1, IX, • • • , IXd-1 generate k[lX] as a vector space
over k. This proves our proposition.

Let E, F be extensions of a field k. If E and F are contained in some field
L then we denote by EF the smallest subfield of L containing both E and
F, and call it the compositum of E and F, in L. If E, F are not given as
embedded in a common field L, then we cannot define the compositum.

Let k be a subfield of E and let lX I ' .. . , IXn be elements of E. We denote
by

k(IXI, ... , IXn)

the smallest subfield of E containing k and lXI' . .. , IXn' Its elements consist of
all quotients

f(IX I, , IXn)

g(IXI , , IXn)

where f, g are polynomials in n variables with coefficients in k, and

Indeed, the set of such quotients forms a field containing k and IX I,···, IXn '

Conversely, any field containing k and

must contain these quotients.
We observe that E is the union of all its subfields k(IXI, .. . , IXn) as

(IX I , ••• , IXn) ranges over finite subfamilies of elements of E. We could define
the compositum of an arbitrary subfamily of subfields of a field L as the
smallest subfield containing all fields in the family. We say that E is finitely
generated over k if there is a finite family of elements IX I, ••• , IXn of E such
that

E = k(IXI, ... , IXn)'

We see that E is the compositum of all its finitely generated subfields over k.

Proposition 1.5. Let E be a finite extension of k. Then E is finitely
generated.

Proof Let {IXI' ... , IXn} be a basis of E as vector space over k. Then
certainly
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If E = k(a), ... , an) is finitely generated, and F is an extension of k, both
F, E contained in L , then

and EF is finitely generated over F. We often draw the following picture :

EF

/~F

E~/
k

Lines slanting up indicate an inclusion relation between fields. We also call
the extension EF of F the translation of E to F, or also the lifting of E to
F.

Let a be algebraic over the field k. Let F be an extension of k, and
assume k(a), F both contained in some field L. Then a is algebraic over F.
Indeed, the irreducible polynomial for a over k has a fortiori coefficients in
F, and gives a linear relation for the powers of a over F.

Suppose that we have a tower of fields :

each one generated from the preceding field by a single element. Assume that
each ai is algebraic over k, i = 1, ... , n. As a special case of our preceding
remark, we note that ai+) is algebraic over k(a), ... , a;). Hence each step of
the tower is algebraic.

Proposition 1.6. Let E = k(a), ... , an ) be a finitely generated extension of
a field k, and assume «, algebraic over k for each i = 1, ... , n. Then E is
finite algebra ic over k.

Proof. From the above remarks, we know that E can be obtained as the
end of a tower each of whose steps is generated by one algebraic element,
and is therefore finite by Proposition 1.4. We conclude that E is finite over k
by Corollary 1.3, and that it is algebraic by Proposition 1.1.

Let e be a certain class of extension fields FeE. We shall say that e is
distinguished if it satisfies the following conditions:

(1) Let k cz F c E be a tower of fields. The extension k c E is in e if and
only if keF is in e and FeE is in e.

(2) If k c E is in e, if F is any extension of k, and E, F are both
contained in some field, then F c EF is in e.

(3) If k cz F and k c E are in e and F, E are subfields of a common field,
then k c FE is in e.
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The diagrams illustrating our properties are as follows:

V. §1

E

I
F

I
k

(1)

EF

/~
E F

~/
k

(3)

These lattice diagrams of fields are extremely suggestive in handling exten
sion fields.

We observe that (3) follows formally from the first two conditions.
Indeed, one views EF over k as a tower with steps keF c EF.

As a matter of notation, it is convenient to write ElF instead of FeE to
denote an extension. There can be no confusion with factor groups since we
shall never use the notation ElF to denote such a factor group when E is an
extension field of F.

Proposition 1.7. The class of algebraic extensions is distinguished , and so
is the class of finite extensions.

Proof Consider first the class of finite extensions. We have already
proved condition (1). As for (2), assume that Elk is finite, and let F be any
extension of k. By Proposition 1.5 there exist elements (Xl" '" (Xn E E such
that E = k((Xl' . .. , (Xn)' Then EF = F((Xl' ... , (Xn), and hence EFIF is finitely
generated by algebraic elements. Using Proposition 1.6 we conclude that
EFIF is finite.

Consider next the class of algebraic extensions, and let

kcFcE

be a tower. Assume that E is algebraic over k. Then a fortiori, F is
algebraic over k and E is algebraic over F. Conversely, assume each step in
the tower to be algebraic. Let (X E E. Then (X satisfies an equation

an(Xn + ... + ao = 0

with a, E F, not all a, = O. Let Fo = k(an, ... ,ao)' Then Fo is finite over k by
Proposition 1.6, and (X is algebraic over Fo. From the tower

k c Fo = k(an, .. . , ao) c Fo((X)

and the fact that each step in this tower is finite, we conclude that Fo((X) is
finite over k, whence (X is algebraic over k, thereby proving that E is algebraic
over k and proving condition (1) for algebraic extensions. Condition (2) has
already been observed to hold, i.e. an element remains algebraic under lifting,
and hence so does an extension.
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Remark. It is true that finitely generated extensions form a distinguished
class, but one argument needed to prove part of (1) can be carried out only
with more machinery than we have at present. Cf. the chapter on transcen
dental extensions ,

§2. ALGEBRAIC CLOSURE

In this and the next section we shall deal with embeddings of a field into
another. We therefore define some terminology.

Let E be an extension of a field F and let

CT: F -. L

be an embedding (i.e. an injective homomorphism) of F into L. Then CT

induces an isomorphism of F with its image CTF, which is sometimes written
Fa. An embedding r of E in L will be said to be over CT if the restriction of r
to F is equal to a. We also say that r extends CT. If CT is the identity then we
say that r is an embedding of E over F.

These definitions could be made in more general categories, since they
depend only on diagrams to make sense:

E--:'-L

m\i
F

We shall use exponential notation (to avoid parentheses), so we write F U

instead of CTF, and fU instead of CTf for a polynomial f, applying (J to the coef
ficients. cr. Chapter II, §5.

Remark. Let f(X) E F[X] be a polynomial, and let a be a root of f in
E. Say f(X) = ao + ... + a.X". Then

o =f(a) = ao + ala + ... + anan.

If r extends (J as above, then we see that ra is a root of fa because

0= r(j(a)) = ag + af(ra) + ... + a:(ra)".

In our study of embeddings it will also be useful to have a lemma
concerning embeddings of algebraic extensions into themselves. For this we
note that if CT: E -. L is an embedding over k (i.e. inducing the identity on k),
then CT can be viewed as a k-homomorphism of vector spaces, because both
E, L can be viewed as vector spaces over k. Furthermore CT is injective.
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Lemma 2.1. Let E be an algebraic extension of k, and let CT: E --+ E be an
embedding of E into itself over k. Then CT is an automorphism.

Proof Since CT is injective, it will suffice to prove that CT is surjective. Let
IY. be an element of E, let p(X) be its irreducible polynomial over k, and let E'
be the subfield of E generated by all the roots of p(X) which lie in E. Then
E' is finitely generated, hence is a finite extension of k. Furthermore, CT must
map a root of p(X) on a root of p(X), and hence CT maps E' into itself. We
can view CT as a k-homomorphism of vector spaces because CT induces the
identity on k. Since CT is injective, its image CT(E') is a subspace of E' having
the same dimension [E' : k]. Hence (J"(E') = E' . Since a E E', it follows that
a is in the image of (J", and our lemma is proved .

Let E, F be extensions of a field k, contained in some bigger field L. We
can form the ring E[F] generated by the elements of F over E. then E[F] =
F[E], and EF is the quotient field of this ring. It is clear that the elements of
E[F] can be written in the form

a.b, + ... + a.b;

with aj E E and b, E F. Hence EF is the field of quotients of these elements.

Lemma 2.2. Let E i - E2 be extensions of a field k, contained in some
bigger field E, and let CT be an embedding of E in some field L. Then

CT(E 1 E2 ) = CT(E 1 )CT(E2 )·

Proof We apply CT to a quotient of elements of the above type, say

(
a1b1 + + anbn) afbf + + a~b~

CT a~ b; + + a~b~ = a~ub~u + + a;:b;:'

and see that the image is an element of CT(E 1 )CT(E2 ). It is clear that the image
CT(E 1E2 ) is CT(E 1)CT(E2 ) .

Let k be a field, f(X) a polynomial of degree ~ 1 in k[X]. We consider
the problem of finding an extension E of k in which f has a root. If p(X) is
an irreducible polynomial in k[X] which divides f(X) , then any root of p(X)
will also be a root of f(X), so we may restrict ourselves to irreducible
polynomials.

Let p(X) be irreducible, and consider the canonical homomorphism

CT: k[X] --+ k[X]/(p(X)).

Then CT induces a homomorphism on k, whose kernel is 0, because every
nonzero element of k is invertible in k, generates the unit ideal, and 1 does
not lie in the kernel. Let ebe the image of X under CT, i.e. e= CT(X) is the
residue class of X mod p(X). Then

pU(e) = pU(XU) = (p(X))u = 0.
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Hence ~ is a root of p", and as such is algebraic over ak. We have now
found an extension of ok, namely uk(~) in which p" has a root.

With a minor set-theoretic argument, we shall have:

Proposition 2.3. Let k be a field and f a polynomial in k[X] of degree
f; 1. Then there exists an extension E of k in which f has a root.

Proof. We may assume that f = p is irreducible. We have shown that
there exists a field F and an embedding

rr: k --+ F

such that p" has a root ~ in F. Let S be a set whose cardinality is the same
as that of F - ak (= the complement of ok in F) and which is disjoint from
k. Let E = k u S. We can extend rr: k --+ F to a bijection of Eon F. We now
define a field structure on E. If x, Y E E we define

xy = u-1(u(x)u(y)),

x + Y = u- 1(u(x) + u(y)).

Restricted to k, our addition and multiplication coincide with the given
addition and multiplication of our original field k, and it is clear that k is a
subfield of E. We let o: = u-1(~) . Then it is also clear that p(rx) = 0, as
desired.

Corollary 2.4. Let k be a field and let fl' .. . , In be polynomials in k [X]
of degrees f; 1. Then there exists an extension E of k in which each /; has
a root, i = 1, ... , n.

Proof. Let E 1 be an extension in which fl has a root. We may view f2
as a polynomial over E i - Let E2 be an extension of E1 in which f2 has a
root. Proceeding inductively, our corollary follows at once.

We define a field L to be algebraically closed if every polynomial in L[X]
of degree f; 1 has a root in L.

Theorem 2.5. Let k be afield. Then there exists an algebraically closedfield
containing k as a subfield.

Proof. We first construct an extension E1 of k in which every polyno
mial in k[X] of degree f; 1 has a root. One can proceed as follows (Artin).
To each polynomial f in k[X] of degree f; 1 we associate a letter Xf and we
let S be the set of all such letters Xf (so that S is in bijection with the set of
polynomials in k[X] of degree f; 1). We form the polynomial ring k[S], and
contend that the ideal generated by all the polynomials f(Xf ) in k[S] is not
the unit ideal. If it is, then there is a finite combination of elements in our
ideal which is equal to 1:

gt!l(Xf) + ... + gnfn(XfJ = 1
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with gj E k[S]. For simplicity, write X, instead of Xfi' The polynomials gj
will involve actually only a finite number of variables, say X I' ... , XN (with
N ~ n). Our relation then reads

n

L gj(X I , · .. ,XN}};(XJ = 1.
i=1

Let F be a finite extension in which each polynomial JI' ...,In has a root,
say a, is a root of }; in F, for i = 1, ... , n. Let a, = 0 for i > n. Substitute «,
for Xi in our relation. We get 0 = 1, contradiction.

Let m be a maximal ideal containing the ideal generated by all polyno
mials J(Xf } in k[S]. Then k[S]/m is a field, and we have a canonical map

u:k[S] -. k[S]/m.

For any polynomial J E k[X] of degree ~ 1, the polynomial f" has a root in
k[S]/m, which is an extension of ak. Using the same type of set-theoretic
argument as in Proposition 2.3, we conclude that there exists an extension
EI of k in which every polynomial J E k[X] of degree ~ 1 has a root in EI •

Inductively, we can form a sequence of fields

E I c E2 C E3 C ... c En ...

such that every polynomial in En[X] of degree ~ 1 has a root in En+1 ' Let E
be the union of all fields En' n = 1, 2, ... . Then E is naturally a field, for if
x , y E E then there exists some n such that x, y E En' and we can take the
product or sum xy or x + y in En . This is obviously independent of the
choice of n such that x, y E En, and defines a field structure on E. Every
polynomial in E[X] has its coefficients in some subfield En, hence a root in
En +1 , hence a root in E, as desired.

Corollary 2.6. Let k be a field. There exists an extension ka which is
algebraic over k and algebraically closed.

Proof Let E be an extension of k which is algebraically closed and let
ka be the union of all subextensions of E, which are algebraic over k. Then
ka is algebraic over k. If rx E E and a is algebraic over ka then rx is algebraic
over k by Proposition 1.7. If J is a polynomial of degree ~ 1 in ka[X], then
J has a root rx in E, and rx is algebraic over k". Hence a is in k: and ka is
algebraically closed.

We observe that if L is an algebraically closed field, and J E L[X] has
degree ~ 1, then there exists c ELand rx l , ... , rxn E L such that

J(X} = c(X - rxt> ... (X - rxn) .

Indeed, J has a root rx l in L, so there exists g(X} EL[X] such that

J(X) = (X - rxt>g(X).

If deg g ~ 1, we can repeat this argument inductively, and express J as a
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product of terms (X - oej) (i = 1, ... , n) and an element c E L. Note that c is
the leading coefficient of f, i.e.

f(X) = cxn + terms of lower degree.

Hence if the coefficients of f lie in a subfield k of L, then c E k.
Let k be a field and 0': k --. L an embedding of k into an algebraically

closed field L. We are interested in analyzing the extensions of 0' to algebraic
extensions E of k. We begin by considering the special case when E is
generated by one element.

Let E = k(oe) where oe is algebraic over k. Let

p(X) = Irrte, k, X).

Let P be a root of v" in L. Given an element of k(oe) = k[oe], we can write it
in the form f(oe) with some polynomial f(X) E k[X]. We define an extension
of 0' by mapping

f(oe) 1-4 j"W).

This is in fact well defined, i.e. independent of the choice of polynomial f(X)
used to express our element in k[oe]. Indeed, if g(X) is in k[X] and such that
g(oe) = f(oe), then (g - f)(oe) = 0, whence p(X) divides g(X) - f(X). Hence
p"(X) divides g"(X) - j"(X), and thus g"(P) = j"(P). It is now clear that our
map is a ·homomorphism inducing 0' on k, and that it is an extension of 0' to
k(oe). Hence we get:

Proposition 2.7. The number ofpossible extensions of 0' to k(rx.) is ~deg p,
and is equal to the number ofdistinct roots of p in k",

This is an important fact, which we shall analyze more closely later. For
the moment, we are interested in extensions of 0' to arbitrary algebraic
extensions of k. We get them by using Zorn's lemma.

Theorem 2.8. Let k be a field, E an algebraic extension of k, and
0' : k --. L an embedding of k into an algebraically closed field L. Then
there exists an extension of 0' to an embedding of E in L. If E is
algebraically closed and L is algebraic over ak, then any such extension of
0' is an isomorphism of E onto L.

Proof. Let S be the set of all pairs (F, r) where F is a subfield of E
containing k, and r is an extension of 0' to an embedding of F in L. If (F, r)
and (F', r') are such pairs, we write (F, r) ~ (F', r') if Fe F' and -r'IF = r,
Note that S is not empty [it contains (k, 0')], and is inductively ordered: If
{(Fj, -rj)} is a totally ordered subset, we let F = UFj and define r on F to be
equal to t j on each Fj. Then (F, r) is an upper bound for the totally ordered
subset. Using Zorn's lemma, let (K, A.) be a maximal element in S. Then A. is
an extension of 0', and we contend that K = E. Otherwise, there exists oe E E,
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ex ¢ K. By what we saw above, our embedding Ie has an extension to K(ex),
thereby contradicting the maximality of (K, ),). This proves that there exists
an extension of a to E. We denote this extension again by a.

If E is algebraically closed, and L is algebraic over ok, then aE is
algebraically closed and L is algebraic over ali, hence L = ali.

As a corollary, we have a certain uniqueness for an "algebraic closure" of
a field k.

Corollary 2.9. Let k be a field and let E, E' be algebraic extensions oj k.
Assume that E, E' are algebraically closed. Then there exists an iso
morphism

r:E~E'

oj E onto E' inducing the identity on k.

Proof Extend the identity mapping on k to an embedding of E into E'
and apply the theorem .

We see that an algebraically closed and algebraic extension of k is
determined up to an isomorphism. Such an extension will be called an
algebraic closure of k, and we frequently denote it by k". In fact, unless
otherwise specified, we use the symbol ka only to denote algebraic closure.

It is now worth while to recall the general situation of isomorphisms and
automorphisms in general categories .

Let (i be a category, and A, B objects in (1. We denote by Iso(A, B) the
set of isomorphisms of A on B. Suppose there exists at least one such
isomorphism a: A ~ B, with inverse a-I : B ~ A. If qJ is an automorphism of
A, then a 0 tp: A ~ B is again an isomorphism. If ljJ is an automorphism of
B, then ljJ 0 a: A ~ B is again an isomorphism. Furthermore, the groups
of automorphisms Aut(A) and Aut(B) are isomorphic, under the mappings

qJ1-+ a 0 qJ 0 a-I,

a-I 0 ljJ 0 a +-IljJ,

which are inverse to each other. The isomorphism a 0 qJ 0 a-I is the one
which makes the following diagram commutative :

A----+ B
o

We have a similar diagram for a-I 0 ljJ 0 a.
Let r: A ~ B be another isomorphism. Then r- I

0 a is an automorphism
of A, and r 0 a-I is an automorphism of B. Thus two isomorphisms differ by
an automorphism (of A or B). We see that the group Aut(B) operates on the
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set Iso(A, B) on the left, and Aut(A) operates on the set Iso(A, B) on the
right.

We also see that Aut(A) is determined up to a mapping analogous to a
conjugation. This is quite different from the type of uniqueness given by
universal objects in a category. Such objects have only the identity auto
morphism, and hence are determined up to a unique isomorphism.

This is not the case with the algebraic closure of a field, which usually
has a large amount of automorphisms. Most of this chapter and the next is
devoted to the study of such automorphisms.

Examples. It will be proved later in this book that the complex numbers
are algebraically closed. Complex conjugation is an automorphism of C.
There are many more automorphisms, but the other automorphisms *" id . are
not continuous . We shall discuss other possible automorphisms in the chapter
on transcendental extensions. The subfield of C consisting of all numbers which
are algebraic over Q is an algebraic closure Qa of Q. It is easy to see that Qa
is denumerable. In fact, prove the following as an exercise:

If k is a field which is not finite, then any algebraic extension of k has the
same cardinality as k.

If k is denumerable, one can first enumerate all polynomials in k, then
enumerate finite extensions by their degree, and finally enumerate the cardi
nality of an arbitrary algebraic extension. We leave the counting details as
exercises.

In particular, Qa #- C. If R is the field of real numbers, then R" = C.
If k is a finite field, then algebraic closure ka of k is denumerable. We

shall in fact describe in great detail the nature of algebraic extensions of
finite fields later in this chapter.

Not all interesting fields are subfields of the complex numbers. For
instance, one wants to investigate the algebraic extensions of a field C(X)
where X is a variable over C. The study of these extensions amounts to the
study of ramified coverings of the sphere (viewed as a Riemann surface), and
in fact one has precise information concerning the nature of such extensions,
because one knows the fundamental group of the sphere from which a finite
number of points has been deleted. We shall mention this example again
later when we discuss Galois groups.

§3. SPLITTING FIELDS AND
NORMAL EXTENSIONS

Let k be a field and let f be a polynomial in k[X] of degree ~ 1. By a
splitting field K of f we shall mean an extension K of k such that f splits
into linear factors in K, i.e.
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f(X} = c(X - IXd • • • (X - IXn)

V, §3

with a, E K , i = 1, .. . , n, and such that K = k(1X1, ... , IXn} is generated by all
the roots of f

Theorem 3.1. Let K be a splitting field of the polynomial f(X} E k[X]. If
E is another splitting field of f, then there exists an isomorphism u: E -+ K
inducing the identity on k. If k eKe k", where ka is an algebraic closure
of k, then any embedding of E in k!" inducing the identity on k must be an
isomorphism of E onto K.

Proof Let K" be an algebraic closure of K. Then K" is algebraic over
k, hence is an algebraic closure of k. By Theorem 2.8 there exists an
embedding

inducing the identity on k. We have a factorization

f(X} = c(X - PI} ... (X - Pn)

with Pi E E, i = 1, ... , n. The leading coefficient c lies in k. We obtain

f(X} = j"(X} = c(X - UP1} ... (X - uPn).

We have unique factorization in Ka[X]. Since f has a factorization

f(X} = c(X - 1X 1} • • • (X - IXn )

in K[X], it follows that (UP1' . . . , uPn) differs from ((1(1' •. . , (l(n) by a permuta
tion. From this we conclude that UPi E K for i = 1, ... , n and hence that
uE c K. But K = k(1X 1, ... , (l(n) = k(UP1' .. . , uPn), and hence uE = K, because

E = k(P1' .. . , Pn}·

This proves our theorem .

We note that a polynomial f(X} E k[X] always has a splitting field,
namely the field generated by its roots in a given algebraic closure ka of k.

Let I be a set of indices and let {};}ieI be a family of polynomials in
k[X], of degrees ~ 1. By a splitting field for this family we shall mean an
extension K of k such that every}; splits in linear factors in K[X], and K is
generated by all the roots of all the polynomials Ii, i E I. In most applica
tions we deal with a finite indexing set I, but it is becoming increasingly
important to consider infinite algebraic extensions, and so we shall deal with
them fairly systematically. One should also observe that the proofs we shall
give for various statements would not be simpler if we restricted ourselves to
the finite case.

Let ka be an algebraic closure of k, and let K, be a splitting field of }; in
k". Then the compositum of the K, is a splitting field for our family,
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since the two conditions defining a splitting field are immediately satisfied.
Furthermore Theorem 3.1 extends at once to the infinite case :

Corollary 3.2. Let K be a splitting field for the family {I;};el and let E
be another splitting field. Any embedding of E into K3 inducing the
identity on k gives an isomorphism of E onto K.

Proof. Let the notation be as above. Note that E contains a unique
splitting field E; of I; and K contains a unique splitting field K; of 1;. Any
embedding (J of E into K 3 must map E; onto K; by Theorem 3.1, and hence
maps E into K. Since K is the compositum of the fields K j , our map (J must
send E onto K and hence induces an isomorphism of E onto K.

Remark. If I is finite, and our polynomials are f1, . .. , fn, then a split
ting field for them is a splitting field for the single polynomial f(X) =
f1(X) .. . fn(X) obtained by taking the product. However, even when dealing
with finite extensions only, it is convenient to deal simultaneously with sets
of polynomials rather than a single one .

Theorem 3.3. Let K be an algebraic extens ion of k, contained in an
algebraic closure k' of k. Then the following conditions are equivalent:

NOR 1. Every embedding of Kin k3 over k induces an automorphism of K.

NOR 2. K is the splitting field of a family of polynomials in k[X].

NOR 3. Every irreducible polynomial of k[X] which has a root in K
splits into linear factors in K.

Proof. Assume NOR 1. Let a be an element of K and let Pa(X) be its
irreducible polynomial over k. Let f3 be a root of Pa in k' , There exists an
isomorphism of k(O() on k(fJ) over k, mapping 0( on {1. Extend this iso
morphism to an embedding of K in k". This extension is an automorphism (J

of K by hypothesis, hence (JO( = {11ies in K. Hence every root of Pa lies in K,
and Pa splits in linear factors in K[X]. Hence K is the splitting field of the
family {Pa}aeK as a ranges over all elements of K, and NOR 2 is satisfied.

Conversely, assume NOR 2, and let {I;};el be the family of polynomials
of which K is the splitting field. If a is a root of some I; in K , then for any
embedding (J of K in k3 over k we know that a« is a root of 1;. Since K is
generated by the roots of all the polynomials 1;, it follows that (J maps K
into itself. We now apply Lemma 2.1 to conclude that (J is an automorphism.

Our proof that NOR 1 implies NOR 2 also shows that NOR 3 is
satisfied. Conversely, assume NOR 3. Let (J be an embedding of K in k3

over k. Let a E K and let p(X) be its irreducible polynomial over k. If (J is
an embedding of K in k3 over k then (J maps a on a root f3 of p(X), and by
hypothesis f3 lies in K. Hence a« lies in K, and (J maps K into itself. By
Lemma 2.1, it follows that (J is an automorphism.
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An extension K of k satisfying the hypotheses NOR 1, NOR 2, NOR 3
will be said to be normal. It is not true that the class of normal extensions is
distinguished, For instance , it is easily shown that an extension of degree 2
is normal, but the extension Q(,y2) of the rational numbers is not normal
(the complex roots of X4

- 2 are not in it), and yet this extension is obtained
by successive extensions of degree 2, namely

E = Q(,y2) ::::> F ::::> Q,

where

F = Q(a), a = J2 and E = F(fi)·

Thus a tower of normal extensions is not necessarily normal. However, we
still have some of the properties:

Theorem 3.4. Normal extensions remain normal under lifting. If
K ::::> E ::::> k and K is normal over k, then K is normal over E. If K I' K 2

are normal over k and are contained in some field L, then K I K 2 is normal
over k, and so is K] II K 2 •

Proof For our first assertion, let K be normal over k, let F be any
extension of k, and assume K, F are contained in some bigger field. Let a be
an embedding of KF over F (in P). Then o induces the identity on F, hence
on k, and by hypothesis its restriction to K maps K into itself. We get
(KF)l1 = Kl1pa = KF whence KF is normal over F.

Assume that K::::> E ::::> k and that K is normal over k. Let a be an
embedding of Kover E. Then a is also an embedding of Kover k, and
our assertion follows by definition.

Finally, if K I' K 2 are normal over k, then for any embedding o of K I K 2

over k we have

and our assertion again follows from the hypothesis. The assertion concern
ing the intersection is true because

u(K I II K 2 ) = u(Kd II u(K2 ).

We observe that if K is a finitely generated normal extension of k, say

K = k(a l , •• • , an),

and PJ, ... ,Pn are the respective irreducible polynomials of al, ... ,an over
k then K is already the splitting field of the finite family PI" ' " Pn' We
shall investigate later when K is the splitting field of a single irreducible
polynomial.
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Let E be an algebraic extension of a field F and let

a:F ..... L

be an embedding of F in an algebraically closed field L. We investigate more
closely extensions of a to E. Any such extension of a maps E on a subfield
of L which is algebraic over «I: Hence for our purposes, we shall assume
that L is algebraic over aF, hence is equal to an algebraic closure of ol'.

Let S(J be the set of extensions of a to an embedding of E in L.
Let L' be another algebraically closed field, and let r: F ..... L' be an

embedding. We assume as before that L: is an algebraic closure of tF.
By Theorem 2.8, there exists an isomorphism A: L ..... L' extending the map
t o a-I applied to the field oF, This is illustrated in the following diagram :

L' +-l------ L

a*
+---- E ------+

I
t F +---- F ------+ aF

r a

We let S, be the set of embeddings of E in L: extending r.
If a" E S(J is an extension of a to an embedding of E in L, then A0 a" is

an extension of r to an embedding of E into L', because for the restriction to
F we have

A 0 a* = t 0 a-l oa = r.

Thus I. induces a mapping from S(J into S; It is clear that the inverse
mapping is induced by ).- 1, and hence that S(J' S, are in bijection under the
mapping

a*H A 0 a*.

In particular, the cardinality of S(J' S, is the same. Thus this cardinality
depends only on the extension E/F, and will be denoted by

[E : FJs'

We shall call it the separable degree of E over F. It is mostly interesting
when E/F is finite.

Theorem 4.1. Let E ::::> F ::::> k be a tower. Then

[E: kJs = [E : FJs[F : kJs'

Furthermore, if E is finite over k, then [E :kJs is finite and
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[E: kJ. ~ [E: k].

V. §4

The separable degree is at most equal to the degree.

Proof Let <1: k ~ L be an embedding of k in an algebraically closed field
L. Let {<1;} i e I be the family of distinct extensions of <1 to F, and for each i, let
{tij} be the family of distinct extensions of a, to E. By what we saw before,
each a, has precisely [E :F]s extensions to embeddings of E in L. The set of
embeddings {tij} contains precisely

[E: F]s[F: k]s

elements. Any embedding of E into Lover <1 must be one of the t ij' and thus
we see that the first formula holds, i.e, we have multiplicativity in towers .

As to the second, let us assume that Elk is finite. Then we can obtain E
as a tower of extensions, each step being generated by one element:

k c k(IX 1 ) C k(IX 1 , IX2) c . . . C k(IX 1 , ..• , IX,) = E.

lf we define inductively FV +1 = Fv(IXv+1) then by Proposition 2.7,

U;'(IXv+tl: Fv]s ~ U;'(IXv+ 1 ) : F.].

Thus our inequality is true in each step of the tower. By multiplicativity, it
follows that the inequality is true for the extension Elk, as was to be shown.

Corollary 4.2. Let E be finite over k, and E ::J F ::J k. The equality

[E : k]s = [E: k]

holds if and only if the corresponding equality holds in each step of the
tower, i.e. for ElF and Ffk.
Proof Clear.

It will be shown later (and it is not difficult to show) that [E : k]s divides
the degree [E : k] when E is finite over k. We define [E : k]i to be the
quotient, so that

[E : k]s[E : k]i = [E : k].

It then follows from the multiplicativity of the separable degree and of the
degree in towers that the symbol [E : k]i is also multiplicative in towers . We
shall deal with it at greater length in §6.

Let E be a finite extension of k. We shall say that E is separable over k if
[E : k]s = [E : k].

An element IX algebraic over k is said to be separable over k if k(IX) is
separable over k. We see that this condition is equivalent to saying that the
irreducible polynomial Irr(IX, k, X) has no multiple roots.

A polynomial f(X) E k[X] is called separable if it has no multiple roots.



V, §4 SEPARABLE EXTENSIONS 241

If IX is a root of a separable polynomial g(X) E k[X] then the irreducible
polynomial of IX over k divides g and hence IX is separable over k.

We note that if keF C K and a E K is separable over k, then a is separable
over F. Indeed, iffis a separable polynomial in k[X] such thatf(a) = 0, then
f also has coefficients in F, and thus a is separable over F . (We may say that a
separable element remains separable under lifting .)

Theorem 4.3. Let E be a finite extension of k. Then E is separable over k
if and only if each element of E is separable over k.

Proof Assume E is separable over k and let IXE E. We consider the
tower

k c k(lX) c E.

By Corollary 4.2, we must have [k(a) :k] = [k(a) :k]s whence a is separable
over k. Conversely, assume that each element of E is separable over k. We
can write E = k(a\, ... , an) where each ai is separable over k. We consider
the tower

Since each a, is separable over k, each lXi is separable over k(1X1, ••• , lXi-i) for
i ~ 2. Hence by the tower theorem, it follows that E is separable over k.

We observe that our last argument shows: If E is generated by a finite
number of elements, each of which is separable over k, then E is separable
over k.

Let E be an arbitrary algebraic extension of k. We define E to be
separable over k if every finitely generated subextension is separable over
k, i.e., if every extension k(1X1, •• • , IXn) with 1X1, ••• , IXn E E is separable
over k.

Theorem 4.4. Let E be an algebraic extension of k, generated by a
family of elements {lXi }ieI' If each a, is separable over k then E is
separable over k.

Proof Every element of E lies in some finitely generated subfield

and as we remarked above, each such subfield is separable over k. Hence
every element of E is separable over k by Theorem 4.3, and this concludes
the proof.

Theorem 4.5. Separable extensions form a distinguished class of exten
sions.
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Proof Assume that E is separable over k and let E ~ F ~ k. Every
element of E is separable over F, and every element of F is an element of E,
so separable over k. Hence each step in the tower is separable. Conversely,
assume that E ~ F ~ k is some extension such that ElF is separable and Flk
is separable . If E is finite over k, then we can use Corollary 4.2 . Namely , we
have an equality of the separable degree and the degree in each step of the tower,
whence an equality for E over k by multiplicativity.

If E is infinite, let a E E. Then a is a root of a separable polynomial f(X)
with coefficients in F. Let these coefficients be an, " " ao. Let Fo =
k(an, ... , ao)' Then Fo is separable over k, and a is separable over Fo. We
now deal with the finite tower

k c Fo c Fo(a)

and we therefore conclude that Fo(a) is separable over k, hence that a
is separable over k. This proves condition (1) in the definition of
" distinguished."

Let E be separable over k. Let F be any extension of k, and assume that
E, F are both subfields of some field. Every element of E is separable over k,
whence separable over F. Since EF is generated over F by all the elements
of E, it follows that EF is separable over F, by Theorem 4.4. This proves
condition (2) in the definition of "distinguished," and concludes the proof of
our theorem.

Let E be a finite extension of k. The intersection of all normal extensions
K of k (in an algebraic closure E") containing E is a normal extension of k
which contains E, and is obviously the smallest normal extension of k
containing E. If O"t, . . . , a; are the distinct embeddings of E in E", then the
extension

which is the compositum of all these embeddings, is a normal extension of k,
because for any embedding of it, say r, we can apply r to each extension
O"iE. Then (rO"t, .. . , rO"n) is a permutation of (O"t, .. . , O"n) and thus r maps K
into itself. Any normal extension of k containing E must contain O"iE for
each i, and thus the smallest normal extension of k containing E is precisely
equal to the compositum

If E is separable over k, then from Theorem 4.5 and induction we
conclude that the smallest normal extension of k containing E is also separ
able over k.

Similar results hold for an infinite algebraic extension E of k, taking an
infinite compositum.
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In light of Theorem 4,5, the compositum of all separable extensions of a
field k in a given algebraic closure ka is a separable extension, which will be
denoted by kS or ksep

, and will be called the separable closure of k. As a
matter of terminology, if E is an algebraic extension of k, and a any
embedding of E in k' over k, then we call aE a conjugate of E in k' . We can
say that the smallest normal extension of k containing E is the compositum of
all the conjugates of E in P.

Let a be algebraic over k. If ai' , a, are the distinct embeddings of k(a)
into ka over k, then we call a1a, , a.« the conjugates of a in k", These
elements are simply the distinct roots of the irreducible polynomial of a over
k. The smallest normal extension of k containing one of these conjugates is
simply k(a1a, . .. , ara).

Theorem 4.6. (Primitive Element Theorem). Let E be a finite extension
of a field k. There exists an element a E E such that E = k(a) if and only
if there exists only a finite number of fields F such that k cz F c E. If E
is separable over k, then there exists such an element a.

Proof If k is finite, then we know that the multiplicative group of E is
generated by one element, which will therefore also generate E over k. We
assume that k is infinite.

Assume that there is only a finite number of fields, intermediate between
k and E. Let a, 13 E E. As c ranges over elements of k, we can only have
a finite number of fields of type k(a + cf3). Hence there exist elements c1 ,

C2 E k with C1 "# C2 such that

k(a + c1 f3 ) = k(a + C2f3).

Note that a + c1 f3 and a + C2f3 are in the same field, whence so is (c1 - C2)f3,
and hence so is 13. Thus a is also in that field, and we see that k(a, 13) can be
generated by one element.

Proceeding inductively, if E = k(a 1 , ... , an) then there will exist elements
c2 , ••• , Cn E k such that

E = k(~)

where ~ = a1 + C2a2 + ... + cnan. This proves half of our theorem.
Conversely, assume that E = k(a) for some a, and let f(X) = Irr(a, k, X) .

Let k cz F c E. Let gF(X) = Irr(«, F, X) . Then gF divides f. We have unique
factorization in E[X], and any polynomial in E[X] which has leading
coefficient 1 and divides f(X) is equal to a product of factors (X - ail where
a\, . . . , an are the roots off in a fixed algebraic closure. Hence there is only a
finite number of such polynomials . Thus we get a mapping

F f--+ gF

from the set of intermediate fields into a finite set of polynomials. Let Fo be
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the subfield of F generated over k by the coefficients of gF(X), Then gF has
coefficients in Fo and is irreducible over Fo since it is irreducible over F.
Hence the degree of a. over Fo is the same as the degree of a. over F. Hence
F = Fo. Thus our field F is uniquely determined by its associated poly
nomials gF' and our mapping is therefore injective. This proves the first
assertion of the theorem .

As to the statement concerning separable extensions, using induction,
we may assume without loss of generality that E = k(a., P) where a., pare
separable over k. Let CT1 , ••• , CTn be the distinct embeddings of k(a., P) in ka

over k. Let

P(X) = n (CTia. + X CTjp - CTja. - X CTjP).
ii'j

Then P(X) is not the zero polynomial, and hence there exists C E k such
that P(c) =j:. O. Then the elements CTj(a. + cP) (i = I, . . . , n) are distinct, whence
k(a. + cP) has degree at least n over k. But n = [k(a., p) : k], and hence

k(a., P) = k(a. + cP),

as desired.

If E = k(a.), then we say that a. is a primitive element of E (over k).

§5. FINITE FIELDS

We have developed enough general theorems to describe the structure of
finite fields. This is interesting for its own sake, and also gives us examples
for the general theory .

Let F be a finite field with q elements. As we have noted previously, we
have a homomorphism

Z~F

sending 1 on 1, whose kernel cannot be 0, and hence is a principal ideal
generated by a prime number p since Z/pZ is embedded in F and F has no
divisors of zero. Thus F has characteristic p, and contains a field isomorphic
to Z/pZ.

We remark that Z/pZ has no automorphisms other than the identity.
Indeed, any automorphism must map 1 on 1, hence leaves every element
fixed because 1 generates Z/pZ additively. We identify Z/pZ with its image
in F. Then F is a vector space over Z/pZ, and this vector space must be



V, §5 FINITE FIELDS 245

finite since F is finite. Let its degree be n. Let W1, . . . , co; be a basis for F
over Z/pZ. Every element of F has a unique expression of the form

with a, E Z/pZ. Hence q = p".
The multiplicative group F* of F has order q - 1. Every IXE F* satisfies

the equation Xq-l = 1. Hence every element of F satisfies the equation

f(X) = X" - X = 0.

This implies that the polynomial f(X) has q distinct roots in F, namely all
elements of F. Hence f splits into factors of degree 1 in F, namely

X" - X = TI (X - IX).
~EF

In particular, F is a splitting field for f. But a splitting field is uniquely
determined up to an isomorphism. Hence if a finite field of order pn exists, it
is uniquely determined, up to an isomorphism, as the splitting field of
XP" - X over Z/pZ .

As a matter of notation, we denote Z/pZ by Fp • Let n be an integer ~ 1
and consider the splitting field of

xr - X = f(X)

in an algebraic closure F; . We contend that this splitting field is the set of
roots of f(X) in F;. Indeed, let IX, f3 be roots. Then

(IX + f3)P" - (IX + f3) = IX P" + f3P" - IX - f3 = 0,

whence IX + f3 is a root. Also,

(1Xf3)P" - 1Xf3 = IX P"f3P" - 1Xf3 = 1Xf3 - 1Xf3 = 0,

and 1Xf3 is a root. Note that 0, 1 are roots of f(X). If f3 =F °then

(P-l)P" - f3-1 = (f3P"r1 - p-l =°
so that f3-1 is a root. Finally,

(- f3)P" - (- f3) = (-l)P"f3P" + f3.

If p is odd, then (-l)P" = -1 and we see that - f3 is a root. If p is even then
-1 = 1 (in Z/2Z) and hence - f3 = f3 is a root. This proves our contention.

The derivative of f(X) is

f' (X ) = pnXP"-l - 1 = -1.

Hence f(X) has no multiple roots, and therefore has pn distinct roots in
F; . Hence its splitting field has exactly pn elements. We summarize our
results :
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Theorem 5.1. For each prime p and each integer n ~ 1 there exists a finite
field of order p" denoted by Fpn, uniquely determined as a subfield of an
algebraic closure F;. It is the splitting field of the polynomial

Xpn - X,

and its elements are the roots of this polynomial. Every finite field is
isomorphic to exactly one field Fpn.

We usually write p" = q and F, instead of Fpn .

Corollary 5.2. Let F, be a finite field. Let n be an integer ~ 1. Ina
given algebraic closure F;, there exists one and only one extension of F, of
degree n, and this extension is the field Fqn.

Proof Let q = p" , Then q" = pm". The splitting field of X qn - X is
precisely Fpmn and has degree mn over Z/pZ. Since F, has degree mover
Z/pZ, it follows that Fqn has degree n over Fq. Conversely, any extension of
degree n over F, has degree mn over F, and hence must be Fpmn. This proves
our corollary.

Theorem 5.3. The multiplicative group of a finite field is cyclic.

Proof This has already been proved in Chapter IV, Theorem 1.9.

We shall determine all automorphisms of a finite field.
Let q = v: and let F, be the finite field with q elements. We consider the

Frobenius mapping

cp: F, --+ F,

such that cp(x) = x". Then cp is a homomorphism, and its kernel is 0 since Fq

is a field. Hence cp is injective. Since F, is finite, it follows that cp is
surjective, and hence that cp is an isomorphism. We note that it leaves F,
fixed.

Theorem 5.4. The group of automorphisms of Fq is cyclic of degree n,
generated by cp.

Proof Let G be the group generated by cp. We note that cp" = id
because q>"(x) = x'" = x for all x E Fq • Hence n is an exponent for cp. Let d
be the period of cp, so d ~ 1. We have cpd(X) = x Pd for all x E Fq• Hence each
x E Fq is a root of the equation

XPd - X = O.

This equation has at most v' roots. It follows that d ~ n, whence d = n.
There remains to be proved that G is the group of all automorphisms of

Fq • Any automorphism of F, must leave F, fixed. Hence it is an auto-
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morphism of F, over Fp • By Theorem 4.1, the number of such auto
morphisms is ~ n. Hence F, cannot have any other automorphisms except
for those of G.

Theorem 5.5. Let m, n be integers ~ 1. Then in any algebraic closure of
Fp' the subfield Fpn is contained in Fpm if and only if n divides m. If that is the
case, let q = v". and let m = nd . Then Fpm is normal and separable over Fq,

and the group ofautomorphisms ofFpm over Fq is cyclic oforder d. generated
by cp".

Proof All the statements are trivial consequences of what has already been
proved and will be left to the reader.

§6. INSEPARABLE EXTENSIONS

This section is of a fairly technical nature, and can be omitted without
impairing the understanding of most of the rest of the book.

We begin with some remarks supplementing those of Proposition 2.7.
Let f(X) = (X - a)mg(x) be a polynomial in k[X], and assume X - a

does not divide g(X). We recall that m is called the multiplicity of a in f.
We say that a is a multiple root of f if m > 1. Otherwise, we say that a is a
simple root.

Proposition 6.1. Let a be algebraic over k, a E k', and let

f(X) = Irrt«, k, X).

If char k = 0, then all roots off have multiplicity 1 (f is separable). If

char k = p > 0,

then there exists an integer J1 ~ °such that every root of f has multiplicity
pit. We have

[k(a) : k] = pit[k(a) : kJ.,

and a P' is separable over k.

Proof. Let a l , ... , a, be the distinct roots of f in ka and let a = a l . Let
m be the multiplicity of a in f. Given 1 ~ i ~ r, there exists an isomorphism

a: k(a) --+ k(ai )

over k such that a« = ai' Extend a to an automorphism of ka and denote
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this extension also by CT. Since f has coefficients in k we have f" = f. We
note that

r

!(X) = f1 (X - aUj)mj

j=!

if mj is the multiplicity of aj in f. By unique factorization, we conclude that
m, = m1 and hence that all m, are equal to the same integer m.

Consider the derivative f'(X). If f and f' have a root in common, then a
is a root of a polynomial of lower degree than deg f. This is impossible
unless deg f' = -00, in other words, f' is identically O. If the characteristic
is 0, this cannot happen. Hence if f has multiple roots, we are in characteris
tic p, and f(X) = g(XP) for some polynomial g(X) E k[X]. Therefore aP is a
root of a polynomial g whose degree is < deg f. Proceeding inductively, we
take the smallest integer IJ. ~ 0 such that aP" is the root of a separable
polynomial in k[X], namely the polynomial h such that

f(X) = h(X P").

Comparing the degree of f and g, we conclude that

[k(a) : k(aP)] = p.

Inductively, we find

[k(a) : k(aP")] = p".

Since h has roots of multiplicity 1, we know that

[k(aP"): kJ. = [k(aP"): k],

and comparing the degree of f and the degree of h, we see that the num
ber of distinct roots of f is equal to the number of distinct roots of h.
Hence

[k(a) : k]s = [k(aP") : k]s.

From this our formula for the degree follows by multiplicativity, and our
proposition is proved . We note that the roots of hare

p" p"a1 , • •• , a, .

Corollary 6.2. For any finite extension E of k, the separable degree
[E : k]s divides the degree [E :k]. The quotient is 1 if the characteristic is
0, and a power of p if the characteristic is p > O.

Proof. We decompose Elk into a tower, each step being generated by
one element, and apply Proposition 6.1, together with the multiplicativity of
our indices in towers.

If ElK is finite, we call the quotient
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[E : k]

[E: kJ.
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the inseparable degree (or degree of inseparability), and denote it by [E: kJi as
in §4. We have

[E: kJ.[E : kJi = [E: k].

Corollary 6.3. A finite extension is separable if and only if [E :kJi = 1.

Proof By definition.

Corollary 6.4 If E ::::> F ::::> k are two finite extensions, then

Proof. Immediate by Theorem 4.1.

We now assume throughout that k is a field of characteristic p > O.
An element r:x algebraic over k is said to be purely inseparable over k if

there exists an integer n ~ 0 such that r:x P" lies in k.
Let E be an algebraic extension of k. We contend that the following

conditions are equivalent:

P. Ins. 1. We have [E: kJ. = 1.

P. Ins. 2. Every element r:x of E is purely inseparable over k.

P. Ins. 3. For every r:x E E, the irreducible equation of r:x over k is of type
X p" - a = 0 with some n ~ 0 and a E k.

P. Ins. 4. There exists a set of generators {r:xJieI of E over k such that
each (Xi is purely inseparable over k.

To prove the equivalence, assume P. Ins. 1. Let r:x E E. By Theorem 4.1,
we conclude that [k(r:x) : kJ. = 1. Let f(X) = Irrt«, k, X). Then f has only one
root since

[k(r:x) : k].

is equal to the number of distinct roots of f(X). Let m = [k(r:x) : k]. Then
deg f = m, and the factorization of f over k(r:x) is f(X) = (X - r:xr. Write
m = pnr where r is an integer prime to p. Then

f(X) = (X p" - r:x P"),

= xr: - rr:xP"Xp"(r-l) + lower terms.

Since the coefficients of f(X) lie in k, it follows that
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lies in k, and since r # 0 (in k), then rx P" lies in k. Let a = «", Then rx is
a root of the polynomial X r: - a, which divides f(X). It follows that
f(X) = XP" - a.

Essentially the same argument as the preceding one shows that P. Ins. 2
implies P. Ins. 3. It is trivial that the third condition implies the fourth.

Finally, assume P. Ins. 4. Let E be an extension generated by purely
inseparable elements a, (i E I). Any embedding of E over k maps rxi on a root
of

/;(X) = Irr(rxi' k, X).

But /;(X) divides some polynomial XP" - a, which has only one root. Hence
any embedding of E over k is the identity on each rxi' whence the identity on
E, and we conclude that [E: kJ. = 1, as desired.

An extension satisfying the above four properties will be called purely
inseparable.

Proposition 6.5. Purely inseparable extensions form a distinguished class
of extensions.

Proof. The tower theorem is clear from Theorem 4.1, and the lifting
property is clear from condition P. Ins. 4.

Proposition 6.6. Let E be an algebraic extension of k. Let Eo be the
compositum of all subfields F of E such that F::> k and F is separable
over k. Then Eo is separable over k, and E is purely inseparable over
e;
Proof. Since separable extensions form a distinguished class, we know

that Eo is separable over k. In fact, Eo consists of all elements of E which
are separable over k. By Proposition 6.1, given rx E E there exists a power of
p, say v: such that rx P" is separable over k. Hence E is purely inseparable
over Eo, as was to be shown.

Corollary 6.7. If an algebraic extension E of k is both separable and
purely inseparable, then E = k.

Proof. Obvious.

Corollary 6.8. Let K be normal over k and let Ko be its maximal separa
ble subextension. Then Ko is also normal over k.

Proof. Let a be an embedding of Ko in K" over k and extend a to an
embedding of K. Then a is an automorphism of K. Furthermore, aKo is
separable over k, hence is contained in K o, since K o is the maximal separa
ble subfield. Hence aKo = K o, as contended.
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Corollary 6.9. Let E, F be two finite extensions of k, and assume that
Elk is separable, F[k is purely inseparable. Assume E. Fare subfields of a
common field. Th en

[EF : F] = [E : k] = [EF : k]s'

[EF : E] = [F: k] = [EF : k];.

Proof. The picture is as follows:

EFP.y ~
E F

~k~s,
The proof is a trivial juggling of indices, using the corollaries of Proposition
6.1. We leave it as an exercise.

Corollary 6.10. Let £P denote the field of all elements x", x E E. Let E
be a finite extension of k. If £Pk = E, then E is separable over k. If E is
separable over k, then £p"k = E for all n ~ 1.

Proof Let Eo be the maximal separable subfield of E. Assume £Pk = E.
Let E = k(a. 1 , • • • , a.n ). Since E is purely inseparable over Eo there exists m
such that a.r E Eo for each i = I, . . . , n. Hence Ep

m
c Eo. But er«= E

whence E = Eo is separable over k. Conversely, assume that E is separable
over k. Then E is separable over EPk. Since E is also purely inseparable over
EPk we conclude that E = EPk. Similarly we get E = EP"k for n ~ I , as was
to be shown.

Proposition 6.6 shows that any algebraic extension can be decomposed
into a tower consisting of a maximal separable subextension and a purely
inseparable step above it. Usually, one cannot reverse the order of the
tower. However, there is an important case when it can be done.

Proposition 6.11. Let K be normal over k. Let Gbe its group ofautomorphisms
over k. Let J<G be the fixed field of G (see Chapter VI, §1). Then KG is purely
inseparable over k, and K is separable over K G. If Ko is the ma ximal separa
ble subextension of K, then K = K GKo and Ko n K G = k.

Proof Let a. E K G. Let r be an embedding of k(a.) over k in K" and
extend r to an embedding of K , which we denote also by t. Then r is an
automorphism of K because K is normal over k. By definition, ra. = a. and
hence r is the identity on k(a.). Hence [k(a.): k]s = I and a. is purely in
separable. Thus KG is purely inseparable over k. The intersection of Ko
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and KG is both separable and purely inseparable over k, and hence is equal
to k.

To prove that K is separable over K G, assume first that K is finite over
k, and hence that G is finite, by Theorem 4.1. Let a E K. Let CT1, ... , CT, be a
maximal subset of elements of G such that the elements

are distinct, and such that CT) is the identity, and a is a root of the polynomial
,

f(X) = TI (X - CTia).
i=1

For any rEG we note that r = f because r permutes the roots . We note
that f is separable, and that its coefficients are in the fixed field KG. Hence a
is separable over KG. The reduction of the infinite case to the finite case is
done by observing that every a E K is contained in some finite normal
subextension of K . We leave the details to the reader.

We now have the following picture :

K

K KG
/ ° <,

Ko "'KG

~ ~.
K o nKG = k

By Proposition 6.6, K is purely inseparable over K o, hence purely insepara 
ble over KoK G. Furthermore, K is separable over KG, hence separable over
KoK G. Hence K = KoK G, thereby proving our proposition.

We see that every normal extension decomposes into a compositum of
a purely inseparable and a separable extension. We shall define a Galois ex
tension in the next chapter to be a normal separable extension. Then K o
is Galois over k and the normal extension is decomposed into a Galois and a
purely inseparable extension. The group G is called the Galois group of the
extension Klk.

A field k is called perfect if kP = k. (Every field of characteristic zero is
also called perfect.)

Corollary 6.12. If k is perfect, then every algebraic extension of k is
separable, and every algebraic extension of k is perfect.

Proof Every finite algebraic extension is contained in a normal exten
sion, and we apply Proposition 6.11 to get what we want.
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EXERCISES

1. Let E = Q((X), where (X is a root of the equation

Express ((X2 + (X + 1)((X2 + (X) and ((X - If· in the form

EXERCISES 253

with a, b, CEQ.

2. Let E = F((X) where (X is algebraic over F, of odd degree . Show that E = F((X2).

3. Let (X and Pbe two elements which are algebraic over F. Let f(X) = Irrt«, F, X)
and g(X) = Irr(p, F, X). Suppose that deg f and deg g are relatively prime . Show
that g is irreducible in the polynomial ring F((X) [X].

4. Let (X be the real positive fourth root of 2. Find all intermediate fields in the
extension Q((X) of Q.

5. If (X is a complex root of X 6 + X 3 + 1, find all homomorphisms a:Q((X) -+ C.
[Hint : The polynomial is a factor of X 9

- 1.]

6. Show that j2 + J3 is algebraic over Q, of degree 4.

7. Let E, F be two finite extensions of a field k, contained in a larger field K. Show
that

[EF: k] ~ [E: k] [F :k].

If [E : k] and [F : k] are relatively prime, show that one has an equality sign in
the above relation.

8. Let !(X) E k[X] be a polynomial of degree n. Let K be its splitting field. Show
that [K :k] divides n!

9. Find the splitting field of XP8 - lover the field ZJpZ .

10. Let (X be a real number such that (X4 = 5.
(a) Show that Q(i(X2) is normal over Q .
(b) Show that Q((X + i(X) is normal over Q(i(X2).
(c) Show that Q((X + i(X) is not normal over Q.

11. Describe the splitting fields of the following polynomials over Q, and find the
degree of each such splitting field.
(a) X 2

- 2 (b) X 2 - 1
(c) X 3

- 2 (d) (X 3
- 2j(X 2

- 2)
(e) X 2 + X + 1 (f) X 6 + X 3 + 1
(g) X 5-7

12. Let K be a finite field with p' elements. Show that every element of K has a
unique p-th root in K .
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13. If the roots of a monic polynomial f(X) E k[Xj in some splitting field are distinct,
and form a field, then char k = p and f(X) = xr - X for some n ~ 1.

14. Let char K = p. Let L be a finite extension of K, and suppose [L : K] prime to
p. Show that L is separable over K.

15. Suppose char K = p. Let a E K . If a has no p-th root in K, show that Xt" - a is
irreducible in K[X] for all positive integers n.

16. Let char K = p. Let a. be algebraic over K . Show that a. is separable if and only
if K(a.) = K(a. pn

) for all positive integers n.

17. Prove that the following two properties are equivalent :
(a) Every algebraic extension of K is separable.
(b) Either char K = 0, or char K = p and every element of K has a p-th root in

K.

18. Show that every element of a finite field can be written as a sum of two squares
in that field.

19. Let E be an algebraic extension of F. Show that every subring of E which
contains F is actually a field. Is this necessarily true if E is not algebraic over F?
Prove or give a counterexample.

20. (a) Let E = F(x) where x is transcendental over F. Let K 'i' F be a subfield of E
which contains F. Show that x is algebraic over K .

(b) Let E = F(x). Let y = f(x) fg(x) be a rational function, with relatively prime
polynomials f, g E F[x]. Let n = max(deg f, deg g). Suppose n ~ 1. Prove
that

[F(x) : F(y)] = n.

21. Let Z+ be the set of positive integers , and A an additive abelian group. Let
f : Z+ -> A and g: Z+ -> A be maps . Suppose that for all n,

f(n) = L g(d).
dl'

Let J.l be the Mobius function (cf. Exercise 12 of Chapter II). Prove that

g(n) = L J.l(nfd)f(d) .
dl'

22. Let k be a finite field with q elements. Let f(X) E k[X] be irreducible. Show that
f(X) divides xqn - X if and only if deg f divides n. Show the multiplication
formula

xr - X = TI TI fAX),
dl' fdirr

where the inner product is over all irreducible polynomials of degree d with
leading coefficient 1. Counting degrees, show that

q' = L d"'(d),
dl'

where "'(d) is the number of irreducible polynomials of degree d. Invert by
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Exercise 21 and find that

m/J(n) = I f1(d)qn1d.

din
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for m -+ 00 .

23. (a) Let k be a finite field with q elements. Define the zeta function

Z(t) = (1 - tj -I TI (1 - t deg pf l,
P

where p ranges over all irreducible polynomials p = p(X) in k[X] with leading
coefficient 1. Prove that Z(t) is a rational function and determine this rational
function,

(b) Let 1tq(n) be the number of primes p as in (a) of degree ~ n. Prove that

q qm
1t (m)- - - -

q q - 1 m

Remark. This is the analogue of the prime number theorem in number theory,
but it is essentially trivial in the present case, because the Riemann hypothesis is
trivially verified. Things get more interesting fast after this case. Consider an
equation yZ = x 3 + ax + b over a finite field F, of characteristic *2, 3, and
having q elements. Assume -4a3

- 27bz *0, in which case the curve defined by
this equation is called an elliptic curve. Define N; by

N; - 1 = number of points (x, y) satisfying the above equation with
x, y E Fqn (the extension of F, of degree n).

Define the zeta function Z(t) to be the unique rational function such that Z(O) = 1
and

A famous theorem of Hasse asserts that Z(t) is a rational function of the form

(1 - IXt)(1 - iXt)
Z(t) = ,

(1 - t)(I - qt)

where IX is an imaginary quadratic number (not real, quadratic over Q), iX is its
complex conjugate, and lXiX = q, so IIXI = q1/2 . See Hasse, ..Abstrakte Bergrundung
der komplexen Multiplikation und Riemannsche Vermutung in Funktionen
korpern," Abh. Math . Sem. Univ. Hamburg 10 (1934) pp . 325-348.

24. Let k be a field of characteristic p and let t, u be algebraically independent over
k. Prove the following :
(a) k(t, u) has degree pZ over kit", uP).
(b) There exist infinitely many extensions between k(t, u) and k(t P, uP).

25. Let E be a finite extension of k and let p' = [E :k]i' We assume that the
characteristic is p > O. Assume that there is no exponent v' with s < r such that
EP'k is separable over k (i.e., such that IXP' is separable over k for each IX in E).
Show that E can be generated by one element over k. [Hint : Assume first that
E is purely inseparable.]
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26. Let k be a field,f(X) an irreducible polynomial in k[Xj, and let K be a finite normal
extension of k. If g, h are monic irreducible factors of!(X) in K[X], show that there
exists an automorphism a of Kover k such that 9 = h" , Give an example when this
conclusion is not valid if K is not normal over k.

27. Let x I' . . . , x, be algebraically independent over a field k. Let y be algebraic over
k(x) = k(x l , • •• , x.) . Let P(X.+d be the irreducible polynomial of y over k(x).
Let qJ(x) be the least common multiple of the denominators of the coefficients of
P. Then the coefficients of qJ(x)P are elements of k[x]. Show that the polynomial

!(XI , . .. , X.+l) = qJ(XI , .. . , X.)P(X.+d

is irreducible over k, as a polynomial in n + I variables.
Conversely, let f(X I' . . . , X.+ I ) be an irreducible polynomial over k. Let

x I ' . • • , x. be algebraically independent over k. Show that

is irreducible over k(x l ' . . . , x.).
If f is a polynomial in n variables, and (b) = (bl , .. . , b.) is an n-tuple of

elements such that f(b) = 0, then we say that (b) is a zero of [. We say that (b) is
non-trivial if not all coordinates b, are equal to O.

28. Let f(XI' •• • , X.) be a homogeneous polynomial of degree 2 (resp. 3) over a field
k. Show that if f has a non-trivial zero in an extension of odd degree (resp.
degree 2) over k, then f has a non-trivial zero in k.

29. Let f(X , Y) be an irreducible polynomial in two variables over a field k. Let t be
transcendental over k, and assume that there exist integers m, n "#0 and elements
a, b E k, ab "#0, such that [tat", btm

) = O. Show that after inverting possibly X or
Y, and up to a constant factor, f is of type

Xmy' - C

with some C E k.

The answer to the following exercise is not known.

30. (Artin conjecture). Let f be a homogeneous polynomial of degree d in n vari
ables, with rational coefficients. If n > d, show that there exists a root of unity (,
and elements

XI ' .. . , x, E Q[O

not all 0 such that f(x I' .•• , x.) = O.

31. Difference equations. Let uI , .. . , Ud be elements of a field K . We want to solve
for infinite vectors (xo, x I' .. . , x., . . .) satisfying

for n ~ d.

Define the characteristic polynomial of the system to be
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Suppose IX is a root of [.
(a) Show that x, = IX· (n ~ 0) is a solution of (.).
(b) Show that the set of solutions of (.) is a vector space of dimension d.
(c) Assume that the characteristic polynomial has d distinct roots IXI, •.. , IXd•

Show that the solutions (IXl), . • . , (IX;) form a basis for the space of solutions.
(d) Let x, = b l IXI + ... + bdIX; for n ~ 0, show how to solve for b., . .., bd in terms

of lXI' .. • , IXd and xo, . . . , X d- I • (Use the Vandermonde determinant.)
(e) Under the conditions of (d), let F(T) = ~>.T·. Show that F(T) represents a

rational function, and give its partial fraction decomposition.

32. Let d = 2 for simplicity. Given ao, aI' u, v, W, t e K, we want to find the solutions
of the system

for n ~ 2.

Let lXI, IX2 be the roots of the characteristic polynomial, that is

Assume that lXI' IX2 are distinct, and also distinct from t. Let

00

F(X) = L a.X·.
• =0

(a) Show that there exist elements A, B, C of K such that

ABC
F(X) = + +--.

l-lXtX l-IX2X I-tX

(b) Show that there is a unique solution to the difference equation given by

for n ~ O.

(To see an application of this formalism to modular forms, as in the work of
Manin, Mazur, and Swinnerton-Dyer, cf. my Introduction to Modular Forms,
Springer-Verlag, New York , 1976, Chapter XII, §2.)

33. Let R be a ring which we assume entire for simplicity. Let

g(T) = Td - ad-ITd- I - . . . - ao

be a polynomial in R[T], and consider the equation

Td= ao + a l T + ... + ad-ITd-I.

Let x be a root of g(T).
(a) For any integer n ~ d there is a relation

with coefficients ai•j in Z[ao, . . . , ad-I] C R.
(b) Let F(T) e R[T] be a polynomial. Then

F(x) = ao(F) + al (F)x + ... + ad-! (F)Xd-1

where the coefficients aj(F) lie in R and depend linearly on F.
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(c) Let the Vandermonde determinant be

= n(xj-xJ
i <j

V, Ex

Suppose that the equation g(T) = 0 has d roots and that there is a factoriza
tion

d

g(T) = n (T - x.).
i=1

Substituting Xj for x with i = I, ... , d and using Cramer's rule on the resulting
system of linear equations, yields

~aiF) = ~j(F)

where ~ is the Vandermonde determinant, and ~j(F) is obtained by replacing
the j-th column by '(F(xtl, . . . , F(x d»), so

XI F(xtl d-I
XI

X2 F(X2) d-I

~j(F) =
X2

Xd F(xd) d-IXd

If ~ i= 0 then we can write

aiF) = ~j(F}/~.

Remark. If F(T) is a power series in R[[T]J and if R is a complete local ring,
with XI ' . . . , Xd in the maximal ideal, and X = Xj for some i, then we can evaluate
F(x) because the series converges. The above formula for the coefficients aj(F)
remains valid.

34. Let Xl' . . . , X d be independent variables, and let A be the ring

d

Q[[x1 , • •• , Xd]J [T] /n (T - xJ
i=1

Substituting some x, for T induces a natural homomorphism CfJj of A onto

and the map Z I-> (CfJdz), ... , CfJd(Z») gives an embedding of A into the product of R
with itself d times.

Let k be an integer, and consider the formal power series

d (T ) t - » d

F(T) = ekT n ; ~j e • = ekT nh(T - xJ
j;l e • - 1 j;l

where h(t)=te'/(et-I). It is a formal power series in T, T-x l , ... , T-xd •

Under substitution of some xj for T it becomes a power series in xj and xj - Xj,
and thus converges in Q[[x 1, .. . , xd ] ],
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(a) Verify that
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d

F(T) == ao(F) + ... + ad_tlF)Td-1 mod TI (T - Xi)
i = l

where ao(F), ... , ad-tlF)eQ[[x1" " , XdJ], and that the formula given in the
preceding exercise for these coefficients in terms of Vandermonde determi
nants is valid.

(b) Show that ad-tlF) = 0 if -(d - 1)~ k < 0 and ad-1(F) = 1 if k = 0,

Remark. The assertion in (a) is a simple limit. The assertion in (b) is a fact
which has been used in the proof of the Hirzebruch -Grothendieck-Riemann
Roch theorem and as far as I know there was no simple known proof until Roger
Howe pointed out that it could be done by the formula of the preceding exercise
as follows. We have

V(X1, . . ., x.)ad-1(F) =

Furthermore,

We use the inductive relation of Vandermonde determinants

V(X1, · · · , xd) = V(x1, ... , Xj" '" xd)(_l)d- j TI (Xj - x.) .
• ",j

We expand the determinant for ad-l (F) according to the last column to get

d 1
a _ (F) = " e(k+d-1lXj TI .

d 1 ~ x · x
j=l ."' je J - e "

Using the inductive relation backward, and replacing Xi by eX' which we denote
by Yi for typographical reasons, we get

Yd y: - 2 y~ +d-l

If k of- 0 then two columns on the right are the same, so the determinant is O. If
k = 0 then we get the Vandermonde determinant on the right, so ad - 1 (F) = 1.
This proves the desired value.



CHAPTER VI
Galois Theory

This chapter contains the core of Galoi s theory . We study the group of
automorphisms of a finite (and sometimes infinite) Galois extension at length ,
and give examples , such as cyclotomic extensions, abelian extensions, and even
non-abelian ones, leading into the study of matrix representations of the Galois
group and their classifications . We shall mention a number of fundamental
unsolved problems , the most notable of which is whether given a finite group
G, there exists a Galois extension of Q having this group as Galois group . Three
surveys give recent points of view on those question s and sizeable bibliographies:

B. MATZAT, Konstruktive Galoistheorie, Springer Lecture Notes 1284, 1987

B. MATZAT , Uberdas Umkehrproblem derGaloisschen Theorie, lahrsbericht Deutsch .
Mat .-Verein. 90 (1988), pp. 155-183

J. P. SERRE, Topics in Galois theory, course at Harvard, 1989 , Jones and Bartlett,
Boston 1992

More specific references will be given in the text at the appropriate moment
concerning this problem and the problem of determining Galois groups over
spec ific fields , especially the rational numbers .

§1. GALOIS EXTENSIONS

Let K be a field and let G be a group of automorphisms of K . We denote
by KG the subset of K consisting of all elements x E K such that x" = x for all
(J E G. It is also called the fixed field of G. It is a field because if x, y E KG then

(x + y)a = x" + ya = X + Y

261
S. Lang, Algebra
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for all (J E G, and similarly, on e verifies that K is closed under multiplication,
subtraction, and multiplicative inverse. Furthermore, KG contains 0 and 1,
hence contains the prime field.

An algebraic extension K of a field k is called Galois if it is normal and
separable. We consider K as embedded in an algebraic closure. The group of
automorphisms of Kover k is called the Galois group of Kover k, and is denoted
by G(K/k), GK/b Gal(K/k), or simply G. It coincides with the set of embeddings
of Kin 10 over k.

For the convenience of the reader, we shall now state the main result of the
Galois theory for finite Galois extensions.

Theorem 1.1. Let K be a finite Galois extension of k, with Galois group G.
There is a bijection between the set of subfields E of K containing k, and the
set ofsubgroups H ofG, given by E = K H

• Thefield E is Galois over k ifand
only if H is normal in G, and if that is the case, then the map (J H (J IE induces
an isomorphism ofGIH onto the Galois groupofE over k.

We shall give the proofs step by step, and as far as possible, we give them for
infinite extensions.

Theorem 1.2. Let K be a Galois extension of k. Let G be its Galois group.
Then k = KG. If F is an intermediate field, k cz F c K, then K is Galois over
F. The map

FH G(KIF)

from the set of intermediate fields into the set of subgroups of G is injective.

Proof Let o: E KG. Let (J be any embedding of k(r:x.) in K", inducing the
identity on k. Extend (J to an embedding of K into K", and call this extension (J

also. Then (J is an automorphism of Kover k, hence is an element of G. By
assumption, (J leaves !X fixed. Therefore

[k(r:x.) :k]s = 1.

Since r:x. is separable over k, we have k(r:x.) = k and r:x. is an element of k. This proves
our first assertion.

Let F be an intermediate field. Then K is normal and separable over F by
Theorem 3.4 and Theorem 4.5 of Chapter V. Hence K is Galois over F . IfH =
G(K/F) then by what we proved above we conclude that F = KH . If F, F' are
intermediate fields, and H = G(K/F), H' = G(K/F'), then

F = KH and F' = KH' .

If H = H' we conclude that F = F', whence our map

FH G(KIF)

is injective, thereby proving our theorem.
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We shall so metimes call the gro up G(K /F ) of an interm ediat e field the group
associated with F. We say th at a subgro up H of G belongs to an intermediate
field F if H = G(K /F ).

Corollary 1.3. Let Klk be Galois with group G. Let F, F' be two inter
mediate fields, and let H, H' be the subgroups of G belonging to F, P respec
tively. Then H n H ' belongs to FF'.

Proof Every element of H n H' leaves FP fixed , and every element of G
which lea ves FF' fixed also leaves F and P fixed and hence lies in H n H'.
This proves our asse rtio n.

Corollary 104. Let the notation be as in Corollary 1.3. Thefixedfi eld of the
smallest subgroup of G containing H, H' is F n P .

Proof Obvious.

Corollary 1.5. Let the notation be as in Corollary 1.3. Then F c P if
and only if H' c H.

Proof If F c F' and (J E H ' leaves P fixed then (J leaves F fixed, so (J lies
in H. Co nversely, if H ' c H then the fixed field of H is contained in the fixed
field of H', so Fe P .

Corollary 1.6. Let E be a finite separable extension of a field k. Let K be
the smallest normalextension ofk containing E. Then K is finite Galois over
k. There is only afinite numberof intermediate fields F such that k cz F c E.

Proof We know that K is normal and separable, and K is finite over k
since we saw that it is the finite compositum of the finite number of conjugates
of E. The Galois group of K lk has onl y a finite number of subgroups. Hence
there is only a finite number of subfields of K containing k, whence afortiori a
finite number of subfields of E containing k.

Of course , the last assertion of Corollary 1.6 has been proved in the preceding
chapter , but we get another proof here from another point of view.

Lemma 1.7. Let E be an algebraic separable extension of k. Assume that
there is an integern ~ I such that every element r:x of E is of degree ~ n over k.
Then E is finite over k and [E :k] ~ n.

Proof Let r:x be an element of E such that the degree [k(r:x ): k] is maximal,
say m ~ n. We contend that k(r:x ) = E. If this is not true, then there exists an
element fJ E E such that fJ ~ k(r:x) , and by the primitive element theorem, there
exists an element y E k(r:x, fJ) such th at k(r:x, fJ) = k(y). But from the tower

k c k(r:x ) c ki«, fJ)

we see that [k(r:x, fJ) : k] > m whence y has degree> mover k, contradiction.



264 GALOIS THEORY VI, §1

Theorem 1.8. (Artin). Let K be afield and let G be a finite group of auto
morphisms of K, of order n. Let k = KG be thefixed field. Then K is a finite
Galois extension ofk, and its Galois groupis G. We have [K :k] = n.

Proof Let IY. E K and let a l' . . . , ar be a maximal set of elements of G such
that allY., . .. , a,« are distinct. If r E G then (tallY., . .. , ro,«) differs from
(allY., . . . , arlY.) by a permutation, because r is injective, and every ta,« is among
the set {allY., . .. , e,«} ; otherwise this set is not maximal. Hence IY. is a root of
the polynomial

r

f(X) = Il (X - ajlY.),
j= 1

and for any r E G,f' = f. Hence the coefficients of f lie in KG = k. Further
more, f is separable. Hence every element IY. of K is a root of a separable
polynomial of degree ~n with coefficients in k. Furthermore, this poly
nomial splits in linear factors in K . Hence K is separable over k, is normal
over k, hence Galois over k. By Lemma 1.7, we have [K :k] ~ n. The Galois
group of Kover k has order ~[K:k] (by Theorem 4.1 of Chapter V), and hence
G must be the full Galois group . This proves all our assertions.

Corollary 1.9. Let K be afinite Galois extensionof k and let G be its Galois
group. Then every subgroup of G belongs to some subfield F such that
k c F c K.

Proof Let H be a subgroup of G and let F = KH
• By Artin's theorem we

know that K is Galois over F with group H .

Remark. When K is an infinite Galois extension of k, then the preceding
corollary is not true any more . This shows that some counting argument
must be used in the proof of the finite case. In the present treatment, we have
used an old-fashioned argument. The reader can look up Artin 's own proof in
his book Galois Theory . In the infinite case, one defines the Krull topology on
the Galois group G (cf. exercises 43-45), and G becomes a compact totally
disconnected group . The subgroups which belong to the intermediate fields are
the closed subgroups. The reader may disregard the infinite case entirely through
out our discussions without impairing understanding. The proofs in the infinite
case are usually identical with those in the finite case .

The notions of a Galois extension and a Galois group are defined completely
algebraically. Hence they behave formally under isomorphisms the way one
expects from objects in any category. We describe this behavior more explicitly
in the present case.

Let K be a Galois extension of k. Let

A:K -> AK
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be an isomorphism. Then AK is a Galoi s extension of Ak.

K ~AK

I I
k~Ak

Let G be the Galois group of Kover k. Then the map

gives a homomorphism of G into the Galois group of AK over sk , whose inverse
is given by

A-l or 0 A<-I r.

Hence G(AK/Ak) is isomorphic to G(K/k) under the above map . We may write

G(AK/Ak)A = G(K/k)

or

G(AK/Ak) = AG(K/k)A- 1
,

where the exponent Ais " conjugation,"

a )' = A-I Q a Q A.

There is no avoiding the contravariance if we wish to preserve the rule

when we compose mappings Aand w.
In particular, let F be an intermediate field, keF c K, and let A:F --+ AF

be an embedding of F in K , which we assume is extended to an automorphism
of K. Then AK = K. Hence

G(K/AF» )' = G(K/F)

and

G(K/AF) = AG(K/F)A- 1
•

Theorem 1.10. Let K be a Galois extension of k with group G. Let F be a
subfield, k cz F c K, and let H = G(K/F). Then F is normal over k if and
only ifH isnormalin G. IfF is normaloverk, then the restriction mapa I----> a IF
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is a homomorphism ofG onto the Galois group of F over k, whose kernel is H.
We thus have G(Fjk) ::::: GjH.

Proof Assume F is normal over k, and let G' be its Galois group. The
restriction map (J -> (J IF maps G into G', and by definition, its kernel is H .
Hence H is normal in G. Furthermore, any element rEG' extends to an em
bedding of K in K' , which must be an automorphism of K, so the restriction
map is surjective. This proves the last statement. Finally, assume that F is not
normal over k. Then there exists an embedding Aof F in Kover k which is not
an automorphism, i.e. AF =I F. Extend A to an automorphism of Kover k.
The Galois groups G(KjAF) and G(KjF) are conjugate, and they belong to
distinct subfields, hence cannot be equal. Hence H is not normal in G.

A Galois extension K jk is said to be abelian (resp. cyclic) ifits Galois group G
is abelian (resp . cyclic).

Corollary 1.11. Let K jk be abelian (resp. cyclic). If F is an intermediate
field, keF c K, then F is Galois over k and abelian (resp. cyclic).

Proof This follows at once from the fact that a subgroup of an abelian
group is normal, and a factor group of an abelian (resp. cyclic) group is abelian
(resp. cyclic) .

Theorem 1.12. Let K be a Galois extension ofk, let F be an arbitrary exten
sionand assumethat K, Fare subfields ofsomeotherfield. Then KF is Galois
over F, and K is Galois over K n F. Let H be the GaloisgroupofKF over F,
and G the Galois groupof Kover k. If (J E H then the restriction of (J to K is
in G, and the map

(JI---> (JIK

gives an isomorphism of H on the Galois groupofKover K n F.

Proof Let (J E H. The restriction of (J to K is an embedding of Kover k,
whence an element of G since K is normal over k. The map (J I---> (J IK is clearly a
homomorphism. If (J IK is the identity, then (J must be the identity of KF
(since every element of KF can be expressed as a combination of sums, products,
and quotients of elements in K and F). Hence our homomorphism (J I---> (J IK is
injective. Let H ' be its image. Then H ' leaves K n F fixed, and conversely, if an
element a E K is fixed under H', we see that a is also fixed under H , whence
a E F and a E K n F. Therefore K n F is the fixed field. If K is finite over k,
or even KF finite over F, then by Theorem 1.8, we know that H ' is the Galois
group of Kover K n F, and the theorem is proved in that case.

(In the infinite case, one must add the remark that for the Krull topology,
our map a I---> aJ K is continuous, whence its image is closed since H is compact.
See Theorem 14.1; Chapter 1, Theorem 10.1 ; and Exercise 43.)
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The diagram illustrating Theorem 1.12 is as follows :

KF

/ ~F
K~ /

KnF

k

It is suggestive to think of the opposite sides of a parallelogram as being equal.

Corollary 1.13. Let K be afinite Galois extensionoJk. Let F be an arbitrary
extension ojk. Then [KF : F] divides [K : k].

Proof Notation being as above, we know that the order of H divides the
order of G, so our assertion follows.

Warning. The assertion of the corollary is not usually valid if K is not
Galois over k. For instance, let lJ. = J'2 be the real cube root of 2, let ( be a
cube root of 1, ( =t I, say

( = - 1 + )=3- ---2-0--,

and let {j = Lo: Let E = Q(fj) . Since {j is complex and rx real, we have

Q(fJ) =t Q(lJ.).

Let F = Q(lJ.). Then En F is a subfield of E whose degree over Q divides 3.
Hence this degree is 3 or 1, and must be 1 since E =t F . But

EF = Q(rx, fj) = Q(rx, 0 = Q(rx, )=3).
Hence EF has degree 2 over F.

Theorem 1.14. Let K 1 and K 2 be Galois extensions oj afield k, with Galois
groups G1 and Gz respectively. Assume K I' K 2 are subfields oj some field.
Then K lK 2 is Galois over k. Let G be its Galois group. Map G --+ G1 X G2

by restriction, namely

ITH(ITIK 1, ITIK2 ) ·

This map is injective. IfKin K2 = k then the map is an isomorphism.
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Proof Normality and separability are preserved in taking the compositum
of two fields, so K [K 2 is Galois over k. Our map is obviously a homomorphism
of G into GI x G2 • If an element a E G induces the identity on K I and K 2

then it induces the identity on their compositum, so our map is injective. Assume
that Kin K 2 = k. According to Theorem 1.12, given an element a lEG I there
exists an element a of the Galois group of K I K 2 over K 2 which induces a1 on
K I • This a is afortiori in G, and induces the identity on K 2. Hence G I x {e2}
is contained in the image of our homomorphism (where e2 is the un it element of
G2 ) . Similarly, red x G2 is contained in th is image. Hence their product is
contained in the image, and their product is precisely GI x G2 • This proves
Theorem 1.14.

KIK 2

/ ~
K 1 K 2

~ /
K'r

k

Corollary 1.15. Let K 1, . . . .K; be Galois extensions of k with Galois
groups GI , .. . , Gn . Assume that K i + I II (K 1 . . . KJ = k for each
i = 1, . .. , n - 1. Then the Galois group of K 1 ••• K; is isomorphic to the
product G1 x ... x G; in the natural way.

Proof Induction.

Corollary 1.16. Let K be a finite Galois extension of k with group G, and
assume that G can be written as a direct product G = G1 X . . . x Gn • Let
K i be the fixed field of

G[ x .. . x {l} x ... x Gn

where the groupwith 1elementoccurs in the i-th place. Then K, is Galois over
k, and K i + I n (K I ••• K j ) = k. Furthermore K = K 1 • • • K n •

Proof By Corollary 1.3, the compositum of all K i belongs to the intersection
of their corresponding groups, which is clearly the identity. Hence the composi
tum is equal to K . Each factor of G is normal in G, so K, is Galois over k. By
Corollary lA, the intersection of normal extensions belongs to the product of
their Galois groups, and it is then clear that K s; 1 n (K 1 . . . KJ = k.
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Theorem 1.17. Assume allfields contained in some common field.

(i) If K, L are abelian over k, so is the composite KL.

(ii) IfK isabelian overk andE isany extension ofk, thenKE is abelian overE.

(iii) IfK isabelian overk andK ::> E ::> k where E is anintermediatefield, then
E is abelian over k and K is abelian over E.

Proof Immediate from Theorems 1.12 and 1.14.

If k is a field, the compositum of all abelian extensions of k in a given alge 
braic closure k" is called the maximum abelian extension of k, and is denoted
by kab.

Remark on notation. We have used systematically the notation:

ka == algebraic closure of k;

kS == separable closure of k ;

kab == abelian closure of k == maximal abelian extension.

We have replaced other people's notation k (and mine as well in the first edition)
with k" in order to make the notation functorial with respect to the ideas.

§2. EXAMPLES AND APPLICATIONS

Let k be a field andf(X) a separable polynomial of degree ~ I in k[Xl Let

f(X) == (X - (Xl ) .. . (X - (Xn)

be its factorization in a splitting field Kover k. Let G be the Galois group of K
over k. We call G the Galois group offover k. Then the elements of G permute
the roots off Thus we have an injective homomorphism ofG into the symmetric
group S; on n elements. Not every permutation need be given by an element
of G. We shall discuss examples below.

Example 1. Quadratic extensions. Let k be a field and a E k. If a is not
a square in k, then the polynomial X2 - a has no root in k and is therefore
irreducible. Assume char k '* 2. Then the polynomial is separable (because
2 '* 0), and if 0' is a root, then k(O') is the splitting field, is Galois, and its
Galois group is cyclic of order 2.

Conversely, given an extension K of k of degree 2, there existsa E k such that
K == k(O') and 0'2 == a. This comes from completing the square and the quadratic
formula as in elementary school. The formula is valid as long as the characteristic
of k is '* 2.
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Example 2. Cubic extensions. Let k be a field of characteristic *" 2 or
3. Let

f(X) = X 3 + aX + b.

Any polynomial of degree 3 can be brought into this form by completing the
cube. Assume thatfhas no root in k. Thenfis irreducible because any factoriza
tion must have a factor of degree 1. Let a be a root of f(X) . Then

[k(a) : k] = 3.

Let K be the splitting field. Since char k *" 2, 3, f is separable. Let G be the
Galois group. Then G has order 3 or 6 since G is a subgroup of the symmetric
group S3' In the second case, k(a) is not normal over k.

There is an easy way to test whether the Galois group is the full symmetric
group. We consider the discriminant. If :;(1' a2, a3 are the distinct roots of
f(X) , we let

15 = (a l - (2)(a2 - :;(3)(a1 - (3) and ~ = 152.

If G is the Galois group and a E G then a(15) = ± 15. Hence a leaves ~ fixed.
Thus il is in the ground field k, and in Chapter IV, §6, we have seen that

il = -4a3 - 27b2 .

The set of a in G which leave (5 fixed is precisely the set of even permutations .
Thus G is the symmetric group if and only if il is not a square in k. We may
summarize the above remarks as follows .

Let f(X) be a cubic polynomial in k[X], and assume char k *" 2, 3. Then:

(a) f is irreducible over k if and only iff has no root in k,

(b) Assume f irreducible . Then the Galois group off is S3 if and only if the
discriminant off is not a square in k. If the discriminant is a square, then
the Galois group is cyclic of order 3, equal to the alternating group A3 as
a permutation of the roots off.

For instance, consider

f(X) = x 3
- X + 1

over the rational numbers. Any rational root must be 1 or -1, and so f(X) is
irreducible over Q. The discriminant is - 23, and is not a square. Hence the
Galois group is the symmetricgroup. The splitting field contains a subfield of
degree 2, namely k«(5) = keVil).

On the other hand, letf(X) = X3 - 3X + 1. Thenfhas no root in Z, whence
no root in Q, so f is irreducible . The discriminant is 81, which is a square, so
the Galois group is cyclic of order 3.

Example 3. We consider the polynomial f(X) = X 4
- 2 over the

rationals Q. It is irreducible by Eisenstein's criterion. Let a be a real root.
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Let i == j=l. Then ±a and ± ill. are the four roots of j(X), and

[Q(a) : Q] == 4 .

Hence the splitting field ofj(X) is

K == Q(lI., i).

The field Q(lI.) II Q(i) has degree 1or 2 over Q. The degree cannot be 2 otherwise
i E Q(lI.), which is impossible since a is real. Hence the degree is 1. Hence i has
degree 2 over Q(lI.) and therefore [K : Q] == 8. The Galois group of j(X) has
order 8.

There exists an automorphism, of K leaving Q(lI.) fixed, sending i to - i,
because K is Galois over Q(lI.), of degree 2. Then ,2 == id.

Q(lI., i) == K

y~
Q(lI.) Q(i)

~/
Q

By the multiplicativity of degrees in towers , we see that the degrees are as
indicated in the diagram. Thus X 4

- 2 is irreducible over Q(i). Also, K is
normal over Q(i) . There exists an automorphism o of Kover Q(i) mapping the
root a of X4 - 2 to the root ia. Then one verifies at once that 1, a, cr, a3 are
distinct and rr4 == id. Thus a generates a cyclic group of order 4. We denote it
by <rr). Since, ¢ <rr ) it follows that G == <rr, ,) is generated by a and, because
<rr ) has index 2. Furthermore, one verifies directly that

because this relation is true when applied to a and i which generate Kover Q.
This gives us the structure of G. It is then easy to verify that the lattice of sub
groups is as follows :
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Example 4. Let k be a field and let t I' .. . , t, be algebraically independent
over k. Let K = k(t I' ,tn). The symmetric group G on n letters operates on
K by permuting (t I' , tn) and its fixed field is the field of symmetric functions,
by definition the field of those elements of K fixed under G. Let SI"'" s;be the
elementary symmetric polynomials, and let

n

j(X) = TI(X - tJ
i= I

Up to a sign, the coefficients ofjare SI"'" s. , We let F = KG. We contend
that F = k(sl' . .. ,sn)' Indeed,

k(sl' . . . , sn) c F.

On the other hand, K is the splitting field of j(X), and its degree over F is n!'
Its degree over k(s I' . . . , sn)is ~ n! and hence we have equality, F = k(s I' .. . ,sn)'

The polynomial j(X) above is called the general polynomial of degree n.
We have just constructed a Galois extension whose Galois group is the sym
metric group.

Using the Hilbert irreducibility theorem, one can construct a Galois extension
of Q whose Galois group is the symmetric group. (Cf. Chapter VII, end of §2,
and [La 83], Chapter IX.) It is unknown whether given a finite group G, there
exists a Galois extension of Q whose Galois group is G. By specializing para
meters, Emmy Noether remarked that one could prove this if one knew that every
field E such that

Q(SI " ' " sn) c E C Q(tl" ' " tn)

is isomorphic to a field generated by n algebraically independent elements.
However, matters are not so simple, because Swan proved that the fixed field
of a cyclic subgroup of the symmetric group is not necessarily generated by
algebraically independent elements over k [Sw 69], [Sw 83] .

Example 5. We shall prove that the complex numbers are algebraically
closed. This will illustrate almost all the theorems we have proved previously.

We use the following properties of the real numbers R : It is an ordered field,
every positive element is a square, and every polynomial of odd degree in R[X]
has a root in R. We shall discuss ordered fields in general later, and our argu
ments apply to any ordered field having the above properties.

Let i = j=1 (in other words a root of X 2 + 1). Every element in R(i)
has a square root. If a + bi E R(i), a, b e R, then the square root is given by
c + di, where

Each element on the right of our equalities is positive and hence has a square root
in R. It is then trivial to determine the sign of c and d so that (c + di)2 = a + bi.
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Since R has characterist ic 0, every finite extension is separa ble. Every finite
extension of R(i) is contained in an extension K which is finite and Galois over
R. We must show that K = R(i). Let G be the Galois group over R and let H
be a 2-Sylow subgroup of G. Let F be its fixed field. Counting degrees and
orders, we find that the degree of F over R is odd. By the primitive element
theorem, there exists an element a E F such that F = R(a). Then a is the root of
an irreducible polynomial in R[X] of odd degree. This can happen only if this
degree is I. Hence G = H is a 2-group.

We now see that K is Galois over R(i). Let G1 be its Galois group. Since G1

is a p-group (with p = 2), if G1 is not the trivial group, then G1 has a subgroup
G2 of index 2. Let F be the fixed field of G2 . Then F is of degree 2 over R(i); it
is a quadratic extension. But we saw that every element of R(i) has a square
root, and hence that R(i) has no extensions of degree 2. It follow s that G1 is the
trivial group and K = R(i), which is what we wanted.

(The basic ideas of the above proof were already in Gauss. The variation
of the ideas which we have selected, making a particularly efficient use of the
Sylow group, is due to Artin.)

Example 6. Let f(X ) be an irreducible polynomial over the field k, and
assume that f is separable. Then the Galois group G of the splitting field is
represented as a group of permutations of the n roots, where n = degf When
ever one has a criterion for thi s group to be the full symmetric group Sn, then
one can see if it applies to this representation of G. For example, it is an easy
exercise (cf. Chapter I, Exercise 38) that for p prime , Sp is generated by
[123 . .. p] and any tran spo sition . We then have the following result.

Let f (X) be an irreducible polynomial with rational coefficients and ofdegree
p prime. If f has precisely two nonreal roots in the complex numbers, then the
Galois group of f is s..
Proof The order of G is divi sible by p, and hence by Sylow's theorem, G

contains an element of order p. Since G is a subgroup of Sp which has order p!,
it follows that an element of order p can be represented by a p-cycle [123 ... p]
after a suitable ordering of the roots, because any smaller cycle has order less
than p, so relatively prime to p. But the pair of complex conjugate roots shows
that complex conjugation induces a transposition in G. Hence the group is all
of Sp .

A specific case is easily given. Drawing the graph of

f (X ) = X 5
- 4X + 2

shows thatfhas exactly three real roots , so exactly two complex conjugate roots.
Furthermorefis irreducible over Q by Eisenstein's criterion , so we can apply
the general sta tement proved above to conclude that the Galois group of f
over Q is S5' See also Exercise 17 of Chapter IV.
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Example 7. The preceding example determines a Galois group by finding
some subgroups passing to an extension field of the ground field. There are
other possible extensions of Q rather than the reals, for instance p-adic fields
which will be discussed later in this book. However, instead of passing to an
extension field, it is possible to use reduction mod p. For our purposes here, we
assume the following statement, which will be proved in Chapter VII, theorem
2.9.

Let f(X) E Z[X] be a polynomial with integral coefficients, and leading
coefficient 1. Let p be a prime number. Let !(X) = f(X) mod p be the
polynomial obtained by reducing the coefficients mod p. Assume that! has
no multiple roots in an algebraic closure ofFp • Then there exists a bijection

of the roots offonto thoseofJ, and an embedding of the Galois group of!as a
subgroup of the Galois group off, which gives an isomorphism of the action of
those groups on the set of roots.

The embedding will be made precise in Chapter VII, but here we just want to
use this result to compute Galois groups .

For instance, consider X 5 - X-lover Z. Reducing mod 5 shows that
this polynomial is irreducible. Reducing mod 2 gives the irreducible factors

(X 2 + X + 1)(X3 + X 2 + 1) (mod 2).

Hence the Galois group over the rationals contains a 5-cycle and a product of a
2-cycle and a 3-cycle. The third power of the product of the 2-cycle and 3-cycle
is a 2-cycle, which is a transposition. Hence the Galois group contains a trans
position and the cycle [123451, which generate 85 (cf. the exercises of Chapter I
on the symmetric group). Thus the Galois group of X 5 - X-I is 85.

Example 8. The technique of reducing mod primes to get lots of elements
in a Galois group was used by Schur to determine the Galois groups of classical
polynomials [Schur 31]. For instance, Schur proves that the Galois group over
Q of the following polynomials over Q is the symmetric group :

n

(a) !(X) = 2: Xm/m! (in other words, the truncated exponential series), if
m=O

n is not divisible by 4 . If n is divisible by 4, he gets the alternating group .

(b) Let

Hm(X) = (_l)meX
2
/ 2 :;m(e-X 2

/ 2 )

be the m-th Hermite polynomial. Put

H2n(X) = K~O)(X2) and H2n +1(X) = XK~1)(X2) .

Then the Galois group of ~j)(X) over Q is the symmetric group Sn for i = 0,
1, provided n > 12. The remaining cases were settled in [Schulz 37].
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Example 9. This example is addressed to those who know something
about Riemann surfaces and coverings. Let t be transcendental over the com
plex numbers C, and let k = C(t) . The values of tin C, or 00, correspond to the
points of the Gauss sphere S, viewed as a Riemann surface. Let P1>•• • , Pn+1 be
distinct points of S. The finite coverings of S - {PI, .. . , Pn+l } are in bijection
with certain finite extensions of C(t), those which are unramified outside
PI, . . . ,Pn+1• Let K be the union of all these extension fields corresponding to
such coverings, and let n\n) be the fundamental group of

S - {P1, ... ,Pn+d·

Then it is known that n\n) is a free group on n generators, and has an embedding
in the Galois group of Kover C(t), such that the finite subfields of Kover
C(t) are in bijection with the subgroups of n\n l which are of finite index. Given a
finite group G generated by n elements a I' ... , an we can find a surjective
homomorphism n\nJ

-t G mapping the generators of n\n) on aI, . .. , an' Let H
be the kernel. Then H belongs to a subfield K H of K which is normal over C(t)
and whose Galois group is G. In the language of coverings, H belongs to a
finite covering of

Over the field C(t) one can use analytic techniques to determine the Galois
group. The Galois group is the completion of a free group, as proved by
Douady [Dou 64]. For extensions to characteristicp, see [Pop 95]. A funda
mental problem is to determine the Galois group over Q(t) , which requires
much deeper insight into the number theoretic nature of this field. Basic con
tributions were made by Belyi [Be 80], [Be 83], who also considered the field
Q(Il)(t), where Q(Il) is the field obtained by adjoining all roots of unity to the
rationals. Belyi proved that over this latter field, essentially all the classical fi
nite groups occur as Galois groups . See also Conjecture 14.2 below.

For Galois groups over Q(t), see the survey [Se 88], which contains a
bibliography . One method is called the rigidity method, first applied by Shih
[Shi 74], which I summarize because it gives examples of various notions defined
throughout this book. The problem is to descend extensions of C(t) with a given
Galois group G to extensions ofQ(t) with the same Galois group. If this extension
is Kover Q(t), one also wants the extension to be regular over Q (see the
definition in Chapter VIII, §4). To give a sufficient condition, we need some
definitions . Let G be a finite group with trivial center. Let CI' C2 , C3 be conjugacy
classes . Let P = P( CI' C2, C3) be the set of elements

(gl' g2' g3) E CI X C2 X C3

such that glg2g3 = 1. Let P' be the subset of P consisting of all elements
(gl' g2' g3) E P such that G is generated by gl' g2' g3' We say that the family
(C I , C2 , C3) is rigid if G operates transitively on P'; and P' is not empty.
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We define a conjugacy class C of G to be rational if given g E C and a
positive integer s relatively pr ime to the order of g, then gS E C. (Assuming that
the reader knows the terminology of characters defined in Chapter XVIII , this
condition of rationality is equivalent to the condition that every character X of
G has values in the rational numbers Q.) One then has the following theorem,
which is contained in the works of Shih, Fried, Belyi, Matzat and Thompson .

Rigidity theorem. Let G be a finite group with trivial center, and let
CI> Cz, C3 be conjugacy classes which are rational, and such that the family
(CI> CZ, C3) is rigid . Then there exists a Galois extension ofQ(t) with Galois
group G (and such that the extension is regular over Q).
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§3. ROOTS OF UNITY

Let k be a field. By a root of unity (in k) we shall mean an element ' E k
such that '" = I for some integer n ~ 1. If the characteristic of k is p, then the
equation

has only one root, namely 1, and hence there is no prn_th root of unity except 1.
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Let n be an integer> 1and not divisible by the characteristic. The polynomial

Xn
- 1

is separable because its derivative is nX n
-

1 =i' 0, and the only root of the deriva
tive is 0, so there is no common root. Hence in ka the polynomial x n

- 1 has n
distinct roots, which are roots of unity. They obviously form a group, and we
know that every finite multiplicative group in a field is cyclic (Chapter IV,
Theorem 1.9). Thus the group of n-th roots of unity is cyclic . A generator for
this group is called a primitive n-th root of unity .

If Jln denotes the group of all n-th roots of unity in k" and m, n are relatively
prime integers, then

Jlmn ::::; Jlm x Jln '

This follows because Jlm' u, cannot have any element in common except 1,
and because JlmJln consequently has mn elements, each of which is an mn-th
root of unity . Hence JlmJln = Jlmn ' and the decomposition is that of a direct
product.

As a matter of notation , to avoid double indices, especially in the prime
power case, we write J.L[n] for J.Ln- So if p is a prime , J.L[pr] is the group of
p"-th roots of unity . Then J.L[p"'] denotes the union of all J.L[pr] for all
positive integers r. See the comments in §14.

Let k be any field. Let n be not divisible by the characteristic p. Let C=
Cn be a primitive n-th root of unity in k", Let 0" be an embedding of k«) in k'
over k. Then

so that a( is an n-th root of unity also . Hence a( = (i for some integer i = i(a),
uniquely determined mod n. It follows that a maps k(O into itself, and hence
that k(O is normal over k. If r is another automorphism of k(O over k then

Since a and rare automorphisms, it follows that i(a) and i(r) are prime to n
(otherwise, a( would have a period smaller than n). In this way we get a homo
morphism of the Galois group G of k(O over k into the multiplicative group
(Z jnZ)* of integers prime to n, mod n. Our homomorphism is clearly injective
since i(a) is uniquely determined by a mod n, and the effect of a on k«) is
determined by its effect on ( . We conclude that k«) is abelian over k.

We know that the order of (Z jnZ)* is cp(n). Hence the degree [k«) :k]
divides cp(n).

For a specific field k, the question arises whether the image of Gk(O/k in
(Z/nZ) * is all of (Z/nZ) *. Looking at k = R or C, one sees that this is not
always the case. We now give an important example when it is the case.
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Theorem 3.1. Let ( be a primitive n-th root ofunity. Then

[Q(O : Q] = q>(n),

VI, §3

where cp is the Euler function. The map a H i(cr) gives an isomorphism

GQW 1Q ~ (Z/nZ)*.

Proof. Let f(X) be the irreducible polynomial of ( over Q. Then f(X)
divides xn - 1,say xn- I = f(X)h(X), where bothf, h have leading coefficient
1. By the Gauss lemma, it follows thatf, h have integral coefficients. We shall
now prove that if p is a prime number not dividing n, then (P is also a root off
Since (Pis also a primitive n-th root of unity, and since any primitive n-th root of
unity can be obtained by raising ( to a succession of prime powers, with primes
not dividing n, this will imply that all the primitive n-th roots of unity are roots
off, which must therefore have degree ~ q>(n), and hence precisely q>(n).

Suppose (P is not a root off Then (P is a root of h, and ( itself is a root
of h(XP). Hencef(X) divides h(XP), and we can write

h(XP) = f(X)g(X) .

Since f has integral coefficients and leading coefficient 1, we see that 9 has
integral coefficients. Since aP == a (mod p) for any integer a, we conclude that

h(XP) == h(X)P (mod p),
and hence

h(X)P == f(X)g(X) (mod p).

In particular, if we denote by .fand Ii the polynomials in Z/pZ obtained by
reducing f and h respectively mod p, we see that .f and Ii are not relatively
prime, i.e. have a factor in common. But xn - T= .f(X)n(X), and hence
X" - T has multiple roots. This is impossible, as one sees by taking the de
rivative, and our theorem is proved.

Corollary 3.2. If n, m are relative prime integers ~ I, then

Proof We note that (n and (mare both contained in Q«(mn) since (::'n is a
primitive m-th root of unity. Furthermore, (m(n is a primitive mn-th root of
unity. Hence

Our assertion follows from the multiplicativity q>(mn) = q>(m)q>(n).
Suppose that n is a prime number p (having nothing to do with the character

istic). Then
XP - I = (X - I)(XP-l + .. . + I).
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Any primitive p-th ro ot of unity is a root of the second factor on the right of th is
equa tion. Since there are exactly p - I primitive p-th root s of unity, we con
clude th at the se ro ot s ar e precisely the ro ot s of

XP-I + ... + 1.

We saw in Chapter IV , §3 that this polynomial could be transformed into
an Eisenstein polynomial over the rationals . This gives another proof that
[Q«(p) : Q] = p - 1.

We investigate more closely the factorization of X" - I , and suppose that
we are in cha racteristic 0 for simplicity.

We ha ve

X" - 1 = n(X - (),
[

where the product is taken over a ll n-th roots of unity. Collect together all terms
belonging to roots of unity having the same period. Let

<l>d(X ) = n (X - ()
period [= d

Then

We see that <l>1(X) = X-I , and that

xn - 1

n <l>iX)
d in
d<n

From this we can compute <I> (X) recursively , and we see that <l>n(X ) is a polynomial
in Q[X] because we divide recursively by polynomials having coefficients in Q .
All our polynomials have leading coeffi cient 1, so that in fact <l>n(X) has integer
coefficients by Theorem 1.1 of Chapter IV . Thus our construction is essentially
universal and would hold over any field (whose characteristic does not divide
n) .

We call <l>n(X) the n-th cyclotomic polynomial.
The roots of <l>n are precisel y the primitive n-th root s of unity, and hence

deg <l>n = cp(n ) .

From Theorem 3.J we conclude that <I>n is irreducible over Q , and hence
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We leave the proofs of the following recursion formulas as exercises:

1. If p is a prime number, then

<PiX ) = Xp-I + xr:: + . . . + I,

and for an integer r ~ 1,

VI, §3

- V - I<Ppr(X) - <Pp(X ) .

2. Let n = p~' ... p~s be a positive integer with its prime factorization. Then

<Pn(X) = <PP 1 · · ·Ps(XP~I-l ...p~ . -I).

3. If n is odd> I, then <PZn(X) = <Pn(- X).

4. If p is a prime number, not dividing n, then

_ <Pn(XP)
<Ppn(X) - <Pn(X)'

On the other hand, if pin, then <Ppn(X) = <Pn(XP).

5. We have

<Pn(X) = n(X nld - l)1l(d ).
din

As usual, J1 is the Mobius function:

{
o if n is divisible by p2 for some prime p,

J1(n) = (- IY if n = PI . .. p, is a product of distinct primes,
1 if n = I.

As an exercise, show that

~JL(d) = {I if n = I,
din ° if n > 1.

Example. In light of Exercise 21 of Chapter V, we note that the association
n ~ <Pn(X) can be viewed as a function from the positive integers into the
multiplicative group of non-zero rational functions. The multiplication formula
X" - 1 = fl <PiX) can therefore be inverted by the general formalism of
convolutions. Computations of a number of cyclotomic polynomials show that
for low values of n, they have coefficients equal to °or ± I. However, I am
indebted to Keith Conrad for bringing to my attention an extensive literature on
the subject, starting with Bang in 1895. I include only the first and last items:

A. S . BANG , Om Ligningen l1>m(X) = 0, Nyt Tidsskriftfor Matematik (B) 6 (1895),
pp . 6-12

H. L. MONTGOMERY and R. C. VAUGHN , The order of magnitude of the m-th coef
ficients of cyclotomic polynomials, Glasgow Math. J . 27 (1985), pp. 143-159
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In particular, if <I>n(X) = '2-anjXj, define L(j) = log max, Ianj I. Then Montgomery
and Vaughn prove that

where the sign « means that the left-hand side is at most a positive constant
times the right-hand side for j ~ 00 . Bang also points out that <l>lOS(X) is a
cyclotomic polynomial of smallest degree having coefficients =1= 0 or ± 1: the
coefficient of X7 and X4 1 is -2 (all others are 0 or ± 1) .If' is an n-th root of unity and ' =1= 1, then

I - , n 1 r rn- I 0
-- = +.,+ ... +., = .
1 - ,

This is trivial , but useful.
Let F, be the finite field with q elements, q equal to a power of the odd prime

number p. Then F; has q - 1 elements and is a cyclic group. Hence we have
the index

(F; :F;l) = 2.

If v is a non-zero integer not divisible by p, let

if v == X l

if v =1= X l

(mod p) for some x,
(mod p) for all x .

This is known as the quadratic symbol, and depends only on the residue class
of v mod p .

From our preceding remark, we see that there are as many quadratic residues
as there are non-residues mod p.

Theorem 3.3. Let ' be a primitive p-th root of unity, and let

the sum being taken over non-zero residue classes mod p. Then

Every quadratic extension olQ is contained in a cyclotomic extension.

Proof. The last statement follows at once from the explicit expression of
±pas a square in Q(O, because the square root of an integer is contained in the
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field obt ained by adjoining the squa re root of the prime factors in its factoriza

tion, and also J=1. Furthermore, for the prime 2, we have (1 + i)2 = 2i. We
now prove our assertion concerning S2. We have

As v ranges over non-zero residue classes, so does Vj1 for any fixed u, and hence
replacing v by Vj1 yields

But 1 + , + ... + ,r- )= 0, and the sum on the right over j1 consequently
yields - 1. Hence

S2 = (~)(p - 1) + (- I) L (~)
p v* - ) P

= p( pI) - ~ (;)

= p( pI),
as desired.

We see that Q(JP) is contained in Q«(, J=1)or Q(O, depending on the
sign of the quadratic symbol with - 1. An extension of a field is said to be
cyclotomic if it is contained in a field obtained by adjoining roots of unity.
We have shown above that quadratic extensions of Q are cyclotomic. A
theorem of Kronecker asserts that every abelian exten sion of Q is cyclotomic,
but the proof needs techniques which cannot be covered in this book.

§4. LINEAR INDEPENDENCE OF
CHARACTERS

Let G be a monoid and K a field. Bya character of G in K (in this chapter),
we shall mean a homomorphism

x.G -> K*

of G into the multiplicative group of K. The trivial character is the homo-
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morphism taking the constant value I. Functions Ii :G -> K are called linearly
independent over K if whenever we have a relation

with ai E K, then all a, = O.

Examples. Characters will occur in various contexts in this book. First,
the various conjugate embeddings of an extension field in an algebraic closure
can be viewed as characters . These are the characters which most concern us in
this chapter. Second , we shall meet characters in Chapter XVlll, when we shall
extend the next theorem to a more general kind of character in connection with
group representations .

Next , one meets characters in analysis . For instance, given an integer m, the
functionf : R/Z~ C* such thatf(x) = e27Timx is a character on R/Z . It can be
shown that all continuous homomorphisms of R/Z into C* are of this type .
Similarly, given a real number y, the function x~ e27Tixy is a continuous character
on R, and it is shown in Fourier analysis that all continuous characters of absolute
value I on R are of this type .

Further, let X be a compact space and let R be the ring of continuous complex
valued functions on X. Let R* be the group of units of R . Then given x E X the
evaluation map f ~ f(x) is a character of R* into C* . (Actually, this evaluation
map is a ring homomorphism of R onto C .)

Artin found a neat way of expressing a linear independence property which
covers all these cases , as well as others, in the following theorem [Ar 44].

Theorem 4.1. (Artin) . Let G be a monoid and K a field. Let Xl" . . , Xn
be distinct characters of G in K . Then they are linearly independent over K.

Proof One character is obviously linearly independent. Suppose that we
have a relation

alXI + ... + anXn = 0

with ai E K, not all O. Take such a relation with n as small as possible. Then
n ~ 2, and no a, is equal to O. Since XI' Xl are distinct, there exists Z E G such
that XI(Z) i= xiz). For all x E G we have

aIXI(xz) + ... + anXn(xz) = 0,

and since Xi is a character,

aIXI(z)x1 + ... + anxnCz)Xn = O.

Divide by £I(Z) and subtract from our first relation. The term alXI cancels, and
we get a relation

(
£z(z) )az-- - az Xz + ... = O.
Xl(Z)
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The first coefficient is not 0, and this is a relation of smaller length than our first
relation, contradiction .

As an application of Artin 's theorem, one can consider the case when K is a
finite normal extension of a field k, and when the characters are distinct auto
morphisms at> .. . , an of Kover k, viewed as homomorphisms of K* into K*.
This special case had already been considered by Dedekind, who, however ,
expressed the theorem in a somewhat different way, considering the determinant
constructed from a jwj where w j is a suitable set of elements of K , and proving in
a more complicated way the fact that this determinant is not 0. The formulation
given above and its particularly elegant proof are due to Artin .

As another application, we have :

Corollary 4.2. Let o:/> ... , «; be distinct non-zero elements of afield K. If

aI ' . . . , an are elements of K such that for all integers v ~ °we have

alO:~ + .. . + anO:~ = °
then a, = °for all i.

Proof We apply the theorem to the distinct homomorphisms

of Z~O into K*.

Another interesting application will be given as an exercise (relative in
variants).

§5. THE NORM AND TRACE

Let E be a finite extension of k. Let [E : kJs = r, and let

pI' = [E :kl

if the characteristic is p > 0, and 1 otherwise. Let at, .. . , ar be the distinct
embeddings of E in an algebraic closure ka of k. If 0: is an element of E, we
define its norm from E to k to be

r ( r )IE:kI;
NE1k(a) = Nf(o:) = }]tav O:PI' = }]tav O: .

Similarly, we define the trace

r

TrE/k(a) = Trf{o:) = [E: k] j L o;« .
v=t

The trace is equal to °if [E: kl > 1, in other words, if Elk is not separable.
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Thus if E is separable over k, we have

Nt(a) = TI aa
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where the product is tak en over the dist inct embeddings of E in k" over k.
Similarl y, if Elk is separa ble, then

Tr t (a) = L: a«.
(J

Theorem 5.1. Let Elk be a finite extension. Then the norm Nt is a multi
plicative homomorphism oj E* into k* and the trace is an additive homo
morphism oj E into k. IJ E ::::l F ::::l k is a tower ojfields, then the two mapsare
transitive, in other words,

Nt = N[ 0 N: and Trt = Tr[ 0 Tr:.
IJ E = k(a), andJ(X) = Irrt«, k, X) = X" + an _IXn - 1 + .. . + ao, then

N~(2)(a) = (-l)"ao and Tr~(2 )(a) = -an-I '

Proof For the first assertion, we note that aP" is separable over k if
pJl = [E : kJi' On the other hand, the product

,
TI p I'(J\.a

v = 1

is left fixed und er an y isomorphism into ka because applying such an iso
morphism simply permutes the factors. Hence this product must lie in k since
aP" is sepa rable over k. A similar reason ing applies to the trace.

For the second assertion, let {IJ be the family of distin ct embeddings of F
into ka over k. Extend each I j to an automorphism of P , and denote this
exten sion by Ij also. Let {(J J be the famil y of embeddings of E in k' over F.
(Without loss of generality, we may assume that E c ka

. ) If (J is an embedding
of E over k in k", then for some j , Ij-I (J leaves F fixed, and hence I] 1(J = a, for
some i. Hence (J = I j(J j and consequently the family {I j (JJ gives all distinct
emb eddings of E into k" over k. Since the inseparability degree is multiplicative
in towers, our assertion concern ing the transitivity of the norm and trace is
obvious, because we have already shown that N: maps E into F, and similarly
for the trace.

Suppose now that E = k(a). We have

J (X) = « X - al ) . . . (X - a,))[£:k Ji

if a l , • • • , a, are the distinct roots off Looking at the consta nt term ofJgives us
the expression for the norm , and looking at the next to highest term gives us the
expression for the trace.

We observe that the trace is a k-linear map of E into k, namely

Tr f(ca) = c Tr f(a)
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for all a E E and c E k. This is clear since c is fixed under every embedding of
E over k. Thus the trace is a k-linear functional of E into k. For simplicity,
we write Tr = Trt.

Theorem 5.2. Let E be a finite separable extension ofk. Then Tr : E -+ k is
a non-zerofunctional. The map

(x, y) H Tr(xy)

of E x E -+ k is bilinear, and identifiesE with its dual space.

Proof That Tr is non-zero follows from the theorem on linear indepen
dence of characters. For each x E E, the map

Trx : E -+ k

such that Trx(Y) = Tr(x y) is obviously a k-linear map, and the map

is a k-homomorphism of E into its dual space EV
• (We don't write E* for the

dual space because we use the star to denote the multiplicative group of E.)
If Trx is the zero map, then Tr(xE) = O. If x i: 0 then xE = E. Hence the
kernel of x H Trx is O. Hence we get an injective homomorphism of E into
the dual space E V

• Since these spaces have the same finite dimension, it follows
that we get an isomorphism. This proves our theorem.

Corollary 5.3. Let co1> . . . , co" be a basis of E over k. Then there exists a
basis co'1> . . . , co~ of E over k such that Tr(wicoj) = bij'

Proof The basis CO't, ..• , co~ is none other than the dual basis which we
defined when we considered the dual space of an arbitrary vector space.

Corollary 5.4. Let E be a finite separable extension of k, and let (J' I' .. . , (J'"

be the distinct embeddings ofE into k a over k. Let WI , ... , Wn be elementsof
E. Then the vectors

are linearly independent over E ijw l , . .. , wnform a basis ofE over k.

Proof Assume that WI' .. • , W" form a basis of Elk. Let (XI' • •. , (X" be ele
ments of E such that

Then we see that


